RUG 101900

IX. On Fossil and Recent Lagomorpha. By C. I. Forsyth Major, M.D). (Communicated by Prof. (̇̀. B. Howes, Sec. Limn. Soc.)

(Plates 36-39.)

Read 16th June, 18:98.

Tooth-change and Tooth-formula in the Lagomyide.

'The three extinct Lagomvidec, Titmomys, Prolayus, and Lagopsis, and the surviving Lugomys, have five upper cheek-tecth, as against six in Leporider (Paleoblagus and Lepus s. 1.). From a comparison of the form and relative size of the teeth in Lepus and Lagomys, the type genera of both groups, Waterlonse * and Gervais \dagger had rightly argued that the last upper molar of Lagomys corresponds to the penultimate upper molar in the Hare. Since Leppes changes the three anterior of the upper six, and the two anterior of the lower five check-tectl, the formula heing therefore $\mathrm{P}_{\frac{3}{2}, ~ M . ~}^{3}, \frac{3}{3}$, it might have been further inferred that the momber of premolars in Lagomyide is the same as in the Leporids.

Curionsly enough, in recent species of Lagomys the tooth-change has never been examined. In $1870 \ddagger$, O. Fraas described and figured the milk-dentition of Prolugus, with $\frac{\frac{3}{4}}{4}$ check-teeth, there being three deciduous molars above and two below. The obvious inference is that the premolars are the same in number as the milk-teeth, and therefore in agreement with what is known in Lepus.

Fraas, however, proposes quite a novel definition of what we have to consider to be premolars, with the unavoidable result of thus introducing an element of confusion. Finding the three upper posterior and the three lower posterior cheek-teeth of Prolagus more in agreement as to general form with each other than with those anterior to them, which are two in the upper and one in the lower jaw, he conchudes that these last are to be considered as premolars. Aceording to this theory, which conflicts with the prior statement of the number of deciduous teeth, the tooth-formula would be P. $\frac{2}{1}, ~ M . \frac{3}{3}$. But this second statement is again in flagrant contradiction with the following description of the mode in which the tooth-ehange is supposed to oceur'. The anterior upper premolar, termed $\mathrm{P}_{\cdot 2}$ by Fraas, is stated to have no deeiduous predecessor, the place of the anterior of the three decidnous teeth being taken by the premolar following behind the first, the socalled $\mathrm{P}_{\cdot 1}$; while the anterior premolar pierces the jaw in front of $\mathrm{P}_{r_{1}}$ and comes in place

[^0]SECOND SERIES.-ZOOLOGY, VOL. VII.
through the same lacuna ("Zahmlücke"), produced by the dropping ont of the first decidnons. The two posterior deciduous teeth are, according to the writer, situated on the top of molars I. and II. (!) respectively, like so many caps. So that, according to this deseription, of the five upper cheek-tceth of Prolugus, the first and the last have no deciduons predecessors, but the three intermediate have. In the lower jaw Fraas finds two deciduous cheek-teeth: "Neben dem ersten zweiwnzeligen Deciduns, der ïber dem einzigen Pracmolaren sitzt, ist noch ein zweiter zweiwurzeliger Deciduns, der von dem ersten Molaren verdrängt wird." According to this, in the lower jaw the supposed unique premolar and what he belieses to be the first true molar would have deciduous predecessors.

Those astomding views necessarily ereated a distrast in Frans' description of :3 deciduons molars (in Prolagns); and as a consequence most of the subsequent anthors on the subject, up to this day, have, with regard to the Lagomyidie, preferred to adhere to the old Cuvierian dictum, viz, that in all the Rodents with more than three molars, only the one (or more) anterior to the three are replaced, and that the latter alone are to be considered trine molars.

Filhol has observed the two anterior lower cheek-teeth to change in Titenomys, and he apparently extends this observation to the maxillary teeth as well: "Chez le Titunomys, les denx premières dents étaient sujettes aur remplacement "*.

The one author who first rightly interpreted the tooth-formula of Lagomyidx is Winge, although he has not seen the tooth-chamge. Of Fras' statements he says that they are not elcar, partly due to some of the premolars lreing called molars; and he continues to say that Layomys-which, according to him, includes the forsil "Myolugns" and its allies-
 from a comparison with Lepus; in the maxillary the three anterior teeth, in the mandible the two anterior are changed" \uparrow.

In the first part of his memoir on Tertiary Rodentia, Schlosser speaks invariably of only one inferior premolar and of a fourth inferior true molar (m. f) in fossil Lagomyide 中; but later on he gradually s arrives at the trme statement of things as given in the supplement to the above memoir, in the following words:-"In this group (i.e. the Lagomorpha) at least the tirst two anterior teeth in each jaw are changed, so that we must speak of two, respectively three premolars" $\|$.

My own observations are to the following ellect:-

1. Titmomyls.-This gems has five chrek-tecth in the upper jaw. The deciduous teeth are three in the maxillary and two in the mandible, as is seen in the Rott skeleton deseribed below. The iwo deciduons inferior teeth, as mentioned abore, have already been figured by Fillhol ©.
```
    * Aml. Ne. Giol. x. p. 2! (1N-0).
    \dagger "0m l'attedyrenes Tandskifte "(Vidensk. Meddel. Naturh. Forening i Kjöbenlarn f. 1882), 1. 40 (188%'). Nee
also H. Winge, ju 'E Musco Lundii,' i. pp. lus, 111 (1088).
    \ddagger ' l'aluont)graphica,' xxxi. p. 10 &c. (1804). § Op. cit. p. 110, Anu. シ..
    | l'al&ontogr. xxxi.p 32% (1850). |f op.cit. p. 29, pi. 3. fig. 3.
```

As to the number of lower cheek-tecth, I find, as a rule, five in one of the species, Titanomys Fontannesi; but in two out of seventeen mandibular rami there are only four teeth, there being no trace of an alveolus for the last small tooth, whieh probably will be found constantly present in young specimens.

In the other species, T. cisenoriensis, the fifth lower molar is supposed to be oftenermissing than not. Pomel ealled Amphilagus-regarded by him as a sulbemus of Lagomys-those specimens of T. risenoviensis in which five mandibular eheck-teeth were present: those with only four teeth he placed in his genus Lagodus (Lagodus picoiles, Pomel, =Titunomys risenociensis, H. v. Mey.). Filhol has based a fusion theory on the presence or absence of the small molar in question *. He assumes that at a certain given moment there prevails a tendeney to simplification in the Lagomyine dentitionfirstly by the fusion of the last (fiftly) tonth with the penultimate, and seeondly by the tendency of the fused elements to disappear.

This theory is at once disposed of by the fact that in the mandibles of Titconomys Fontamesi before me both the fifth tooth and the posterior colonnctte of the fourthwhich colonnette Filhol considers to be the fifth tooth fused to the fourth-are present together. I think that for T. cisenociensis the same explanation holds good as with regard to T. Fontmnesi, viz. the fifth tooth has sometimes been lost in the young animal and its alveolus obliterated ; its frequent alsence is simply explained by the fact that it has dropped out in the fossils.

Anyhow, the fommala of Titanomys will have to be written as follows:-
2. Prolagns.-I have at my disposal the deciduous molars of two species of Prolagus $[P$. anningensis (Kön.) and P. sarolns (Wagn.)]; there are three in the upper and two in the lower jaw, as scen already by Fias in the first-mamed species. In the sknll of a young P. surdus, where the deeiduous tecth are in siln, the following may be seen :-The anterior of the three deciduons tecth is not sitnated directly abore the anterior premolar, but slightly backward, elosely appressed to the second deciduons, so that with its anterior moiety it corers only the posterior part of the premolar; besides it could not possibly eover the latter completely, being much smaller. It is needless to say that neither of the true molars, both of which are already protruded in the sknll under observation, supports a milk-tooth ; as a matter of fact, the tonth called molar I. by Fraas, which in reality is the posterior of the three premolars, is situated under the posterior of the three deciduons molars, as is the middle premolar moder the middle deciduons.

In the lower jaw of both species the two anterior of the fom lower cheek-teeth replace the two deciduons teeth.

Therefore, since Prolugus has in the full-grown animal five check-teeth above and four belor, its tooth-formula will be:-

$$
\begin{aligned}
& \text { P. } \stackrel{3}{-}, \mathrm{M} . \frac{2}{2} \text {, or } \frac{\mathrm{p} \cdot 3 \cdot \mathrm{p} \cdot \mathrm{P}, \mathrm{p} \cdot 1: \mathrm{m} \cdot 1, \mathrm{~m} \cdot \underline{2}}{\mathrm{p} \cdot 2, \mathrm{p} \cdot 1: \mathrm{m} .1, \mathrm{~m} \cdot \underline{2}} \text {. } \\
& \text { * Aun. Ne. Géol. x. p. } 28 \text { (1879). }
\end{aligned}
$$

3 \& t. Lagopsis and Lagomys.-Since these genera lave five cheek-teeth in both jaws, there being a small fifth inferior tooth, their tooth-formula will be:-

To sum up. The number of premolars is constant in all the genera of Lagomyida, and the same as in Lepus; whereas that of the true molars varies in the different genera; not rice rerst, as has been supposed by Lydekker *, Flower \dagger, and Zittel \ddagger.

The upper m. 3, always present in Lepus, is alwars absent in the Lagomyide. Of the lower true molars, m .3 is always present in Lagopsis and Leyomys, when not lost in the fossil: it is akways absent in Prolugns; white in Titnomys this tooth is rarely absent in one species, T'. Fontannesi, more frequently in the other, T. visenoviensis, but presumably always present in young specimens of both.

1. Gemms Titanomes.

Titanomys, H. r. Meyer, Neues Jalurl. 1813, p. 390.
Layodus, Pomel, Cat. métlı. Vert. foss. Loire et Allier, p. 41 (185̈3) ; Depéret, Arch. Mus. Lyou, iv. p. 120 (1887).

Lagomys (subg. Amphilayns), Pomel, op. cit. p. 42.
Layomys, Lydekker, Cat. Foss. Mamm. Br. Mus. i. p. 2505 (1885).
Lagomys (Layopsis), Dehlosser, Pal. Oestr.-Ung. viii. p. 8(i, foot-n. 4 (1890), p.p.; Depéret?, Arel. Mus. Lyon, v. ן. 58 (1892).

Titanomes visenoliessis.

Titanomys visenoriensis, H. v. Meyer, Neues Jalurb. 184.', p. 390; Gervais, Zool. et Pal. fr., prem. éd., Expl. No. 46, pl. xlvi. fig. 2 (18.18-52) ; Brom, Leth. Geogn. iii. p. 103 (1853-56) ; Gervais, Zool.
 pl. xlii. (1870) ; Filhol, Ann. Sc. Céol. x. p. 26, pl. ii. figs. 2es, 26, pl. iii. figs. l-18 (1879) ; Schlosser, 1’alseontogr. xxxi. p. 29, pl. xii. figy. 36, 38, 39, 11, 13, 15, 17, 18(1884); Zittel, Haudb. d. Palicont. i., iv. p. 55. (1891-93).

Titanomys trilobus, Cervais, Zoul. et Pal. fr., prem. éd., Expl. No. 46, pl. xlvi. fig. 1 (I848-亏ٌ̈).
Lagodus picoides, Pomel, Cat. méth. p. 41 (1853).
Latyomys (subg. Amphilagus) antiquns, Pomel, op. eit. p. 43.
Amphilagus antiqu", Selalosser, op. cit. p. 30.
Lagomys visenoriensis, Lydekker, Cat. Foss. Mamm. Brit. Mus. i. p. 258 (1885).

Historical Skelok.

In annomeing his new genus Titanomys (type species T? visenoviensis), from the Lower Miocene of Weisenam near Mayence, H. r. Meyer characterizes it as having prismatic cheek-teeth, agreeing in size and number and resembling in form those of Lagomys, with the difference, however, that the lower molars of the fossil present a distinct

[^1]posterior appendage ("Hinteransatz") not known to exist in Lagomys, while the Weiscuau Rodent lacks the distinctly developed tooth-particle ("Zahntheil") in the last lower molar of existing Lagomys and of those of the "ossiferous breccia"; by which is apparently meant the Prolayus of Corsica and Sardinia.

We meet here at the outset with several incorrect statements. The upper molars are not, as we shall see later, prismatic, and the lower are only incompletely so. By the alleged agreement in number of the molars of both Titanomys and Lagomys we are to understand that both genera have fom lower cheek-teeth, the author believing at that time that the existing Lagomys has form mandibular cheek-tecth, while in reality there are five. H. r. Meyer considered the fifth small cylindric tooth of Lagomys to be a third prismatic particle connected with the anterior molar, as is the case in Prolagus. The author further makes a distinction-which is repeated two years later in his 'Fossil Mammals of (Eningen,' where incidentally the genus Tithnomys is mentioned *-between a distinct "Hinteransatz" in the posterior molars of Titenomys, and the "distinctly developed " posterior or third "Lahntheil" of the last molar' in some Lagomyide, without being aware that the two are one and the same thing and homologons.

The characteristics given of the upper moiars are not incorvect, but mather vague, showing that the anthor did not succeed in making out the pattern of the triturating surface, as is confirmed also by his manuscript drawings subsequently published by Schlosser.

In the first edition of his 'Zoologie et Palćontologie françaises.' Gervais figures, without description, two mandibular rami from the Lower Miocene of Saint-Gérand-le-Puy (Allier) ; the fig. 1. of pl. 16 is named Titcmomys trilobns, the fig. 2 T. visenoriensis. In the explanation of the plate it is stated that the identification with T. risenoriensis rests on a comparison with a mandible of this species from Germany in the British Musenm (this is under No. 21495, from Weisenau). Gervais had no mpper molars from the French deposit, but says that those from Germany, which are in London, "sont assez semblables à celles des Lapins, mais beaneoup plus courtes et plus arquées," adding that they are of the same form as those from the Miocene of the Limagne, called Jurcuinomys by Croizet and Plelyodon by Bravard. These are two mannseript names.

In 1853 Pomel issucd a small work of a high standard on the fossil vertebrates of the Loire and Allier basins, pretending to be nothing more than a catalogue 申. The descriptions are in consequence very short, and as there are no figures, the utility of this excellent publication has been rather limited. The Lepridet family opens \ddagger with a new genns, Lagodus, from the Tertiary of Langy; the only species, L. picoides, scarcely larger than Lagomys pusilhns, is based mainly on the upper and lower cheekdeutition, the description of which I transeribe at length for finture reference. From this it will be seen that the anthor assigus to his gemes Lergodus five upper and fomr

[^2]lower cheek-tecth; the first superior was missing, and from the form of the alveolus it is declared to have been very small. "En hant il paraît y awoir eu cinc molaires; la seeonde est phértroite que chez les Lagomys et pour ainsi dire réduite à une seule lame marquée en travers de deux plis d'émail, de manière à figurer presque trois croissants concentriques; les trois autres ont deux lames dont la première est simple, et la seeonde pourvue des deux replis d'émail de la dent qui préeìde, excepté ì la cinquième dent, oir elle est plus petite. ." The lower teeth are said to be four in momber, "par absence de la dernière. Première tétragone divisée par deux sillons en deux cylindres eomprimés, dont l'antérieure plus saillante est aussi un peu plus large et la seconde a en arrière an petit pli d’émail partant de l'angle interne surtout évident à la dernière molaire et s'effiçant assez tard par la détrition. Ces cylindres sont moins eomprimés davant en arrière que ehez les Lagomys, et leur disque de détrition est ovale ohlong, brusquement atténé en angle du côté externe, arrondi vers l’interne."

From the later deseriptions of Titumomys and from examination of originals, we are enabled to refer Pomel's Leigodus to the former genus, and at the same time to appreciate the aecuracy of his description. But without this help and in the absence of figures, it becomes difficult to form an exact conception of the eompticated pattern of the upper teeth, from their neecssarily too short characteristics ly Pomel. Hensel, when describing the teeth of Prolugns (his Mryolagms), was on the look-ont for allied forms; he gives in full Pomel's deseription of Laryodus *, but fails to see the eurions relationship existing between the upper premolars of the former and all the upper eheek-teeth of the latter.

The small enamel fold described by Pomel as starting from the internal angle of the posterior lamina in the three mandibular tecth behind the first is the "IFinteransatz" of H.v. Meyer's Titamomys. The relations of the latter to his Lagodus are not diseussed ly Pomel; he suggests the former to be probally the same as Prolugus sumsuniensis (Lartet's Lagomys sunsumiensis).

Pomel's Amplilargus rests on lower jaws; he considers it to be a subgenus of Lagomys, apparently because in both there are fire lower cheek-teeth: "la demiere molaire" (in Amphilagus) " tres petite est cylindrique et cadnque, en sorte quill ne reste souvent que quatre dents in la mathoire." The form of the anterior lower premolar is the sume as in "Lagortus" and Sitanomys, and very different from the premolar of Lagomys, a character which at once snggests that "Lagodus" and Ampheitagus may le identical, and that the absence of the small posterior appendage in the lower molars attributed to Amphilagus is due to the specimens being from older indiriduals than those assigned to "Lagodus."

In Bronn's 'Lethæa Geognostica,' Tomel's Layodns is given as a synonym of Titanomys risenoriensis on the authority of II. v. Meyer ("fide Meyer in litt.").

The second edition of the Zool. et Pal. franç. (1859) gives good reasons for conside ring Titanomys tritobus as the roung of T. risenoriensis. Of the last lower molar in particular Gervais says:-"la dernière montre eneore aree assez d'évidence un troisième lobe, qui

[^3]est d’ailleurs petit et qui, ì un âge plus avancé, eût été confondu aree le second lobe de la même dent, comme cela se voit chez le sujet de la figure 2" (T. cisenoviensis) ; and he goes on stating, as Pomel had done for his Lagotlus, that this little posterior column is gradually worn away. It is mentioned by Gervais only in the last molar, and his figures show no trace of it in the anterior molars.

Referring to Pomel's Lagodus and Amphilagus, Gervais lamehes an ungenerous and unfounded aceusation against this author, alleging that the former genus is "du moins en partie" based on his, Gervais", figure of Titur trilobus, and that Amplilugus rests on fig. 2, representing Titon. visenoriensis. No mention is made of Pomel's description of the upper dentition of "Lugodus." If the latter writer failed to recognize in his Lugodus and Amphilayus H. v. Merer's Titunomys cisenoriensis, it was perfectly excusable at the time he wrote, when this species had been so rery imperfectly diagnosed both by II. v. Meyer and lyy Gervais, who hoth failed to make out the pattern of the upper teeth. Up to this day we have not been better off with regard to the upper cheek-teeth from the type-locality Weiscuan.

It would have heen fairer on the part of Gervais to acknowledge that Pomel's description of the inferior molars of "Lagodns" had gone far in crabling him (Gervais) to recognize the non-validity of his species T. tritobus, and that Pomel had besides described more accurately than himself the lower terth, in demonstrating the presenee of the "petit pli d'émail" in all the posterior teeth of younger specimens. He certainly eould not have based this statement on Gerrais' fig. 1 of the young specimen, where only the last molar shows a posterior appendage. The accusation with regard to A m_{1} Hhitugus is quite as mufounded as the first one. Pomel assigns five teetls to the lower jaw of his genus, Gervais' figure shows only four; the description of the first tooth of Amphitugus does not exactly agree with the tooth in Gervais figure, from which last, moreover, it could not be made out that the two eylinders of each of the posterior teeth are united by cement, as stated by Pomel to be the case in his Amplilugus. Other particulars oceur in the deseription of Amphilagus, which might at once have convinced an impartial critic that Pomel hased his description on originals. These were, many years later (1579), handed by II. Pomel himself to Prof. Filhol *.

In his posthmons paper (1570) on the skeleton of a roung Titenomys cisenociensis from the Lignite of Rott near Bonn, now in the British Museum (No. 41055), H. v. Meyer mentions rooted cheek-teeth in Tilcuomys, and he has been understood to state that only the deciduons teeth of this genns are protided with roots. However, when reading attentively II. v. Mever's paper-I might almost say, in reading between the lines ats well-one necessarily comes to the conchsion that in adult specimens the permanent molars were also rooted, and that the anthor himself had suspected this fact, but hesitated to proclaim it. Two kinds of rooted Titenomys-teeth are mentioned in the paper. With regard to those of the Rott skeleton, the author states that their triturating surfaces are concealed in the matrix, so that their opposite ends only could be examined; but this does not hide the fact, he continues, that the two posterior upper

* Ann. Sc. Géol. x. pp. 27, 28 (1579).
teeth were formed as in Lagomys. This evidently implies that they have no roots; for the writer proceeds to state that in the tectl anterior to those just mentioned lengthened roots can be seen. In the two anterior cheek-teeth of the lower jaw, H. v. Meyer describes a short erown and a long root, composed of two strongly converging parts; and these two teeth seem to be situated somewhat higher than the two posterior, which suggests that they had not yet emerged abose the alveolar margin. Contrary to the anterior rooted teeth, these two posterior ones are described as "prismatic"; the whole of their crown has an enamel coating, and is not completely closed below. The author conchudes that the tecth seem to indieate that the animal was of immature age, a supposition which would explain the differences of the anterior teeth from those of Lagomys.

As a matter of course, in the lagomorphous Rodentia with permanent eheek-teeth growing ly persistent pulps, the decidnons teeth are rooted too as in the Rott skeleton. But the anthor proceeds to state ($\mathrm{P}, 12 \mathrm{~S}$) that he has examined detached teeth of the Titcnomys from Weisenan of two kinds: on the one hand, small teeth comesponding to the anterios teeth of the Rott specimen; on the other, lower teeth differing from the last by a lengthened prismatic erown and quite insignificant ronts; and upper teeth as well, of larger size than those corresponding to the upper anterior teeth from Rott, supposed by I. r. Meyer to he possibly deciduons. In the larger teeth the roots are said to disappear almost completely ; "die flach prismatisehe, wekrümme Krone vertritt zugleich die llauptwozel, und es wird nur anseen ohen ein klenes Ẅ̈rzelehen wahrgenommen, das auch in einer entspreehenden Stelle des Kiefers eingreilt, während das an der Innenseite mit ciner Rime verschene Zahmprisma die eigentliche Aveole ausfült."

From what will be seen later on, these larger teeth, upper and lower, are in fact the permonent teeth of Titunomys, as II. r. Meyer hesitatingly suggests. Therefore there is no foundation in the distinetion-such as is drawn by Deperet-of two genera, founded on the presence or alsence of roots in the permanent teeth, viz. :-
(1) Titanomys, with roots in the decidnous set onls.
(2) Lagodus, with roots in the permanent teeth as well (premolars and true molars).

Proceeding with our historical sketch in chronological order, we next have to consider Fithol's description of Titenomys risenocionsis from Saint-Gérand-le-Puy (Allier) *, which has already been quoted more than once in the preceding pages. Among the synonyms of this species are given Amphitugus antiquus, Pom., and Lagodus picoides, Pom. : the identification of the former rests on one of the type specimens of Pomel; the latter is not discussed in the paper. An important character noted by Fithol is the relatively considerabie longitudinal extension of the bony palate in Titanomys. The shortuess of the bony palate in lagomorphons Rodents is doultless a specialization; but by its areater extension Titunomys approaches more the condition of other Rodentia and Mammalia generally. The same is true of Palcolagus, from the Miocene of North Ameriea, which presents curious resemblances with Titanomys in its dentition also. Moreover, we meet with a lengthened bony

```
* Ann. Sc. Géol. x. p. 26(18%9).
```

palate in Lepus raldumensis，Weith．＊，from the Upper Pliocene of Tuseany，and in three existing Leporines，Lepus hispuilus，l＇ears．from the foot of the Himalayis， L．Netscheri，Schleg．© Jent．，from Sumatra 中，and Romerolagus Velsoni，Merr．，from the Popocatepetl（Mexico）\ddagger ，all three of whith have other generalized characters in common with each other and partly with Palcoolugus．

Description of Original Specimens．

1．The Rott Skeleton．－In its present condition，of the two anterior lower cheek－teeth described and figured by H．r．Meyer，only the imprint is preserved，with the exception of the anterior hall of the front tonth，which is still in place．Hrom what ean still be seen，and with the help of I．r．Meyers deseription and figures，there remains not the slightest doubt that these two anterior teeth belong to the deeiduous set，since they bear the characters of milk－teeth，riz．，a short crown and（two）long roots，much diverging from each other downward．The number of teeth in front of the two posterior in the upper jaw is left uncertain in the figures and text of the original memoir．A close examination shows that there are three of them：the first apparently is provided with a stouter internal and a somewhat weaker extermal root；the two following with one internal and two smaller external roots，the latter strongly diverging from the shaft in opposite directions．Here，too，we hare the characteristic features of milk－teeth，of which there are consequently three upper in Titunom，ls，as might lave been anticipated by analog？to Prolenges．The immature condition of the specimen can be further inferred from the fact that the two posterior teeth，viz．，the fourth and fifth in the series，are not yet on the same level with the three in front of them． As these two posterior teeth are broken at their lower ends，nothing can be stated as to their roots．

Still less－and this applies to all the teeth of the Rott specimen－can be made out about the pattem of thrir triturating surface，which，as noticed already by H．v．Meyer， is concealed in the matrix．This deficiency is partly supplied ly some teeth from the type－locality of Theisenan，in the British Museum．

2．Titanomys riscnoriensis from Weisenten．－A fragment of the right upper jaw from the Lower Miocene of Weisenau，in ihe Geological Department of the British Museum（21495）， Pl．36，fig．19，shows the two posterion pemolars，p．1，p．$\stackrel{\rightharpoonup}{ }$ ，and part of the ahreolus of the anterior premolar，p．3．These upper teeth were seen ly Gervais，who alludes to them \S ，contenting himself with the abure－reported general remarks．The first of the two premolars preserved，p． 2 ，at once calls 10 mind by its gencral form the anterior upper premolar＇，p．3，of Lepus，and to it therefore may be justly applied Gervais＇remark referring to all the upper teeth in London，viz，that they are＂assez semblables à celles des Lapins．＂The general outline of this tooth is somewhat triangular，the broader basis heing on the inner side，which is imperfectly divided by a slight notel into two abraded

> * Jabrl. k.-k. geul. Reichsanst. vol. xxxix. p. $50(1589)$.
> \dagger 'Notes from the Leyden Mnseum, ‘ vol. ii. note xii. 1'. ら!! (1ざい).

$$
\begin{aligned}
& \text { § Zool. et Pal. Franc. 1st ed. t. ii. expl. no. } 46 \text { (184-52) : ?nd ed. 1. } 50 \text { (1559). }
\end{aligned}
$$

SECOND SEBIES．－ZOOLOGY，VOL．VII．
ensps (8 \& ?). Proceeding ontward, we mect with two chamel folds starting from the anterior side of the tooth. The one placed more internatly (b) is by far the larger of the tro ; it opens freely on the anterior side, and thence proceeds first internally, and then, gradnally attenmating, postero-externally, thas assuming approximately the form of a cresecnt, whose anterior horn is much shorter them the posterior. Both horns are delimited externally by a cusp (6), having its long axis almust parallel to the long axis of the skull, and protruding with its internal convex border into the enamel fold just described, while its shorter and almost longitudinal external border forms the inner margin of the much smallersecond enamel fold (c). On the outer side of the tooth we meet with a large bulging enamel tuberele (a), worm by attrition on its inner side only, and showing thes that the onter side in this otherwise much-worn tooth is only partially alfected by trituration.

The second tooth, p. I, presents the general contom of the crome of lagomorphous Rodents, the transverse diameter largely predominating over the longitudinal; the anterior border is slightly more convex than the posterior. The minnte pattern of the triturating surface, howerer, is very different from that which we are acenstomed to consider characteristic of upper leporine molars. 'The main difference from p. 2 consists in the two enamel folds being shat out from the anterior border by a transverse anterior lobe, which in p. $2 \boldsymbol{2}$ is apparent only in a much reduced condition, its outer portion being entirely wanting. In 1. 1 the anterior lobe or "wall" delimits the anterior horn of the enamel fold (b) on its front side, so that in this tooth the anterion horn is much more lengthened tramsersely than the posterior. As compared with p. 2, p. 1 has modergone, as it were, a lateal pressure, by which the varions parts of the surface have been forced into a more transterse direction. This is apparent, especially in the strong eusp (6) sepmating enamel folds b and c, which is no more longitndinally directed as in \boldsymbol{p}. 2 but has likewise assumed the form of a eresent with its convexity projecting inward into enamel fold b, and forming externally the inner margin of emamel fold c. The latter has in its turn assumed a more tramsrerse direction, and is only incompletely shut out from the outer border of the tooth by a blunt enamel tuberele (5), ocenpying mainly the postero-external part of the tooth. The summit only of this tuberele is slightly worn.

The inner border of p. 1 is more distinetly divided tham in p. 2 into two abraded cusps ly a rertical groove, manifesting itself on the triturating surface in the shape of a short enamel fold, or notch ((1).

The levelling. eflect of trituration-faroured by the enamel folds in both teeth being more or less completely filled with cement, - together with the more transverse direction assmmed by the folds and ensps of p. 1, tends to produce a lophodont character of its triturating surface; or rather, we have a selenodont type leaning towards lophorlonty.
3. Tilunomys risenotiensis, from the Allier (France). Br. MLus. 31094 (Bravard Col-lection).-A detached tooth (Il. 36, fig. 12) is more worn still than that just described, as revealed by its triturating surface beins more flattened and the enamel folds more narrowed. It can only be cither p. 1 or m. 1. P. 3 is quite out of the question, as, to judge from its alreolus, it was a very small tooth; p. 2 is reduced in its antero-cxternal,
m． 2 in its postero－external portion（compare fig．19，Pl．36，with fig．6）；so that the choice remains only between p． 1 and m .1 ．It revembles closely the p． 1 described ；only it is narrower，and the anterior lobe of the latter is more dereloped in its intermal portion， although the inverse was to be expeeted，the p． 1 described being less worn．For these reasons I think it more likely to be m．1．This tooth shoms two small ronts on the outer side；on the imner side the crown graduaily thins out downward into a single large root． It cannot be a milk－tooth，because the tion small external roots do not diverge downards， lont run parallel with each other．We have here another proof，if one were needed，that in Titmomys visenoriensis the upper teeth are provided with roots；although this fact has been denied with regard to this species of the Lower Miocene．

Ilendibulur teeth of Titanomys cisenoriensis．－As a characteristic feature of the lower cheek－teetlo of T．cischoriensis，II．r．Meyer makes mention of a small posterior lobe， calling it a distinct posterior appendage（＂ein dentlicher Itinteransatz＂）＂．About the oceurence of this small particle much uncertainty prevails．When establishing the genus，in the paper jnst quoted，II．v．Meyer mentioned it in an general way as present in the lower cheek－teeth，semingly implyines that all of them were provided with this appendage．In his posthumous memoir，howerer，speakins again of the Weisenau speci－ mens，he says that it oecurs on the postprior cheek－tecth and would have disappeared by effect of attrition \dagger ．l＇omel assigns it to the three posterior check－teeth of＂Lagodus picoilles，＂adding that it takes its orgin from the intermal angle，that it is more evident especially in the last molar and disappears rather late by attrition $\$$ ．

According to Gertais § it would occur only on the fourth tooth（m．2），and as a character of young specimens；the same is stated by Filhol $\|$ ，who had at his di．pposal a considerable number of lower jaws．Schlosser styles it a third lobe occurring as an anomaly （＂abnorm vorkommend＂）in＂n．3＂（meaning m．2）of Titunomys cisenociensis； although in the same memoir he figures manuscript drawings by II．v．NLeyer，where it is shown in two molars．This same small lobe oceurs in Pelcoolagns also；it is transitional in one species，P ．Itaydeni，as described hy Cope 粦，apparently persisting in another species，P ．triplent \dagger ．On a former oceasion I incidentally pointed out the interest attached to it from looth a phylo－and ontogenetic point of view 中中．

As to the occurrence of this small lobe or cusp in T ．cisenociensis，my orn observations tend to show that it is constantly present in young specimens，not only of the posterior， but also of the anterior lower teeth，including p．－．In a fragment of a right mandibular ramus of T ．visenociensis from the Allier（Bravard Collection，Br．Nus． $31091-104$ ），Pl． 3% ，fig．25，exhibiting the two anterior cheek－teeth，p． 1 and p．2，in a moderate stage of wear，traces of this kole are visible in both these premolars，very distinctly in the posterior（p．1）．

```
* Neues Jahrb. 1s43, p.390. + 1'al:contogr. xrii. p. 220 (1800).
\ddagger Cat. méth. p. 41 (1853). & Zool. et Pal. Franç. sce. ed. p. 50 (1859).
li Amn.N'. (Gíol. x. p. 27 (15:!). - lalaontograph. xxxi. p. 32 (1484).
*** The Vertelrata of the Tertiary Formations of tho Trest,p. . - 6 (1483).
t\dagger Op.cit. p. ssl. $t l'roc. Zool. Soc. London, p. 203 (1893).

It has been found convenient to give the detailed descriptions of the lower molars of this and all the other gencra in a separate chapter（p．473）．

\section*{Ttanomys Fontannesf．}

Lagodus Fontannesi，Deperet，Arch．Mus．Lyon，iv．p．12r，pl．xiii．figs．19－19 c（188テ）．
Lagomys（Layopsis）verus，Schlosser，Pal．Oestr．－Ung．viii．p． 86 （1890）；Depéret（\％），Arch．Mus．Lyon， v．p． a （ 1892 ）．

Under the name of Lagodus Fontumesi，Depéret deseribed a fragment of an upper jaw，from the Middle Diocene of La Girive－Saint－Allan（Isère），as related to Titanomys risenociensis，H．v．Merer＇but，in addition to its larger size，he distinguished it by other more important characters．

Schlosser has supposed，without assigning reasons，that Lugorlus Foutamesi，Dep．，is
 and Deperet，in his second publication on the Eanna of La Grive，is disposed to accept Schlosser＇s viems．It may be asked at onee，what then becomes of the left palate， figured and deseribed by Depéret in his first memoir＊，where he considers it，rightly in my opinion，to belong to the Layomys repus．As this question will be discussed under the head of Lagopsis verus，when it will be shown that Deperret＇s origiual view in distinguishing between＂Lagotus Fontannesi＂and Lagomys remus is the correet one， we have for the precent only to deal with Depéret＇s first memoir＇，in which＂Lagodus Fontennesi＂is described，and where he asserts that it is distinct as a gemen from Titanomys visenoriensis of the Lower Mioeene．

For this Deperet gives two reasons．In the first line he maintains that his Lagodus preserves in its adult dentition part of the characters of the decidnous dentition of Titnomys visenoriensis，meaning that in the latter the milk－teeth alone are rooted， while in the former the permanent check－tecth ire rooted as well．I have already disposed of this supposed diflerence，by showing that the permanent teeth of Titanomys risenorionsis are likewise rooted．

Deperet＇s secoud reason is given in the foilowing words ：－＂Le Layodus Fontamesi se distingue d’ailleus facilement du Titnomys cisenoriensis．．．par quelques différences dans les dessins d＇émail qui ornent la surface de la couronne＂（i．o．of the upper molars）． ＂D＇après IV．Filhol，le lobe postéricur des molaires supérieures du Titanomys d＇Aıvergne est orné d＇un double pli en chevron entomant une printe externe；dans le Lagodus de La Grive il y a trois plis en cherron concentriques et pas de pointe extérieure bien manileste＂\(\dagger\) ．

The enlarged figures of the triturating surface in the teeth of＂Lanforus Fontennesi＂ and Titmomys cisenoviensis do not help us，as they are sadly inaccurate．The artist who drew the former 中 completely failed to understand the pattern；while in Filhol＇s eularged drawings § the artist has not even made an attempt at aceuracy，contenting himself with drawing the outlines of the teeth，and leaving out almost completely the details of the
```

* Arch. Mus. Lyon, ir. p. 16t, p]. xiii, fig. 17 (15s宕)

```

crown's surface. In the figures which I give of the tecth of both forms *, no essential difference is to be seen in the pattern. The disagreement in the description of the two writers finds its explanation in the somewhat loose way of deseribing the triturating surface, i.e. by the failure to distinguish between a dentine surface bordered by two enamel ridges which alternates with an enamel fold filled with cement, so that only the two enamel borders of the fold appear on the surface. As an onteome of this alternation we find, when proceeding from the inner side of the tooth to its outer side, the following succession in the middle line of the tooth : enamel ridge; dentine; enamel ridge ; cement ; enamel ridger ; dentine; enamel ridge ; cement; enamel tubercle of the outer side.

Apparently the two writers do not always apply the term "cherron" to the same thing. Fihhol, speaking of the "denxieme element" of the tooth, by which he means the part of the crown backward from the anterior lobe, his "premice élement," says: "Chez les Titanomys, on peut le considéror comme constitué par un cherron à sommet interne, dont les deux extrémités circonscrivent une pointe externe. Ce premier chevron est borné en dedans par un denxième cherron dont le sommet correspond au bord interne de la dent. Ce mode de structure est surtout hien marqué sur la troisième molaire" \(\dagger\). This description, which is quite correct as far as it goes, applies equally well to the species of the Lower and to that of the Middle Miocenc, as may be seen by a comparison of the figmes (Pls. 36, 37, 39); by consulting the figures it may be further seen that what the anthor calls cherrons are tho spaces of dentine bordered hy enamel ridges, which spaces mark the position of enamel chaps before wear set in.

Depéret, in describing the same "troisiome molaire," \(i\).e. the posterior of the three premolars, of Layodus Fontumesi, says:-"Cette couromne se compose de denx prismes d'émail étroitement accolés, un peu mieux distinctsen dehors que du côté interne, qui est de forme arrondie. Le prisme antérieur [Filhol's premier élément] est composé d'un seul pli d'émail transverse; le prisme postríicur au contraire, a surface triturante coupée obliquement en arriere, présente denx plis d'émail en cherron is pointe interne, ce qui dessine sur la couronne trois petits croisants concentriques, si l'ou compte la lamelle d'émail qui limite le bord interne de la comronne " \({ }^{\text {中 }}\).

It is certainly not accurate to describe the single eylinder of which these upper teeth consist as composed of two enamel prisms "étroitement accolés." Lpart fiom this, Depéret's description, like Fithol's, applies to both Lutgoths Fomlnenesi and Tiltenomys visenoriensis. By "denx plis d'émail en chevron it pointe interne," the author evidently has in view, firstly, the larger, internal, of the two enamel folds; sccondly, the creseentshaped cusp (6) external to it, which by the eflect of wear presents a dentinal surface bordered ly an outer and an inner enancl ridge. By counting, morcover, the enamel horder of the intermal side of the crown, Deperet arrives at the number of thee "petits eroissants concentriques," which on the following page are cailed "trois plis en cherron concentriques." Filhol leaves ont of account the enamel fuld by which his two chevrous are separated.
* Pl. 36. figs. 18, 19 ; Pl. 37. fig. 11; Pl. 39. fig. 16 (Titunomys visuoriensis). Pl. 36. figs. 6-8, 12-1.)


As a result of this minute analysis we find that there exists no essential difference in the tooth-pattern of the two supposed genera.

The roots of the Titanomys-molars have next to he described. I have elsewhere dealt incidentally with the conditions in Titanomys (Latgorlus)*. I was impressed by the fact that the chief points of wear are on the inner side in the upper, on the outer in the lower molars, and that these parts are the first to appear lengthened (rertically) in teeth in a condition intermediate between brachyodonty and hypselodonty, while the onter sides of upper, and the imer sides of lower molars remain, as it were, in a passive condition (for upper molars of Titcnomys see Pl. 39. figs. 1, 2, 5, 13, 11, 19). It then appeared to me that the upper teeth of Titunomys showed the hypselodonty-which, as abore demonstrated, is here in fact "aceompanied by a gradual and essential change of the pattern of the crown " \(\dagger\)-to extend gradually towards the onter side. In the description of the pattern of the Protugns-molars (pp. 452, 153) I have reconsidered my former riew, and hare been ahle to show that the obliteration of the original pattern is chiefly the consequence of an atrophy on the outer side; whereas the secondary pattern is brought about by a new addition, starting from the inmer side and directed chiefly inwerd. It remains nome the less thene "that the rertical cleration of the erown, the first stage towards lypsodonty, always has its starting-point from the inner side of upper molars"\$. I added at the same time that "the inner root (of the upper molars) which ultimately will remain open, gradually extends outward, increasing in size, and recoives a coating of enamel"s. It is acainst this latter assertion eqpecially that the Rér. Perre Hende has directed a criticism, couched in energetic terms \(\|\). When he begins by saying that I had not demonstated my assertion, he is perfectly right; but I had at the time no other intention than to assert, reserving full demonstration for a work on the hagomorpha under preparation, as intimated on p. 208.

The Rér. Pere's argments are to the elfect that the roots of teeth camot be imagined to reccive a coatingr of enamel, because luchyodonte" "st un arrêt de diveloppement, une fixatiom par cessation de mourement, une détérioration du fût transformé en racine. Couséquemment la dent ne pent revenir à son mourement initial." In order to demonstrate that "loyiquement" hypectodonty is more primitive (" plus ancien ") than brachyodonty, and that " réellement ces deux faits sont phylogéniquement indépendants," the Rév. Pire adduces the incisors of Tiodentia. "D'autre part tontes les incisives des Rongeurs útant essenticllement hyposodontes et is toutes les ‘poqnes, an point qu’elles emportent la définition de l'ordre, il faut admettre qu'elles n'ont pas varié, qu'elles ont un caractère commun fixé, et qu’à ce titre l’hepsodontisme est plus général que le brachyodontisme."

It is not hypselodonty, as such, which is the more primitive condition, but the growing of a tooth by a persistent pulp. And. since hypselodont teeth contimue to grow by persistent pulps during the greater part or the whole of the animal's life,

\footnotetext{

|| 'Mémoires coucernant l'Hist. naturelle de l'Empire Chinois. par des Péres de la Compagnie de Jésus,' t. ir. 1. 75 (18!14).
}
they may, in a sense, be termed primitive; but, as a matter of course, lurachyodont and semihypselodont teeth, before they are perfectly dereloped, hare the carities at their bases open as well as hypselodont leeth; and when they are in this condition, their brachyodonty is not ret "un arrêt de développement." Ontogenetically and "togiquement," every hypselodont tooth passes throngh a brachyodont condition, the shaft enly gradually increasing in length. Phylogenetically, brachyodonty is also more primitive than hypsclodonty, as is kown to all scientific morphologists who have a knowledge of palaontology.

On Pl. 39. figs. 19 and 20, I have delineated side by side in the anterior view a posterior upper right premolar, p. l, of Titnomys Fontannesi-the same specimen of which the apper riew is tigured on Pl. 36. fig. S-and an repper right molar of a young Pteromys, in which the roots are not yet closed. Fig. if represents the anterior view of a right upper molar of Tit. eisenoriensis, figured in upper view on Pl. 36. fig. 18. Now, if we are entitled to call roots, eren though they be imperfectly developed, the three prolongations of the erown in Ptoromys (fig. 20), I think we are jastified in applying the same term to the eridently homologous parts in the figured teeth of Titunomys (cf. figs. 14 and 19 , and figs. \(1,4,5\), and 13), and in repeating what I have said formerly *, that the inner rout of Titunomys, which ultimately will remain open, increases in size and receires a coating of cnamel.

Even perfectly adult brachyodont teeth preserve at their extremity a minute opening for the passage of nerres and ressels, so that it may be left to individual judgment at which phase in the ontogeny or phylogeny of a tooth we may begin to use the term "root." ITaring no desite to juggle with words I would, be quite ready to desist using this term for the part of the tooth of Tilumomys which is the homologue of the inner root of Pteromys; but thoreby unthing would be altered. The question at issue is. whether or not ar coating of enamel has extended to that part; and that this has been the ease is shown phanly enough by the figures.

It is interesting to compare the tooth of Tit. cisenociensis (fig. 11) with those of Tit. Fontennesi (figs. 1, 18, 19). The small outer roots are perfoctly closed in the former and more detached from the shaft than in the latter. 'The tooth of the former, as shown by the mper view ( 1 ll. 36. fig. 15), is from an old individual ; but in none of the numerons upper premolans or molars of Tit. Fontanesi have I met with closed outer roots. The coating of the cnamel does not extend so far downward on the inner side in Tit. cisenociensis as in Tit. Fontannesi.

A further difference between the Lower and the Middle Miocene species is also characteristic. In the former (Pl. 39. fis. 14) the external part of the crown extends more ontward than in Tit. Fontunnesi, beyond the small roots; this character has been already noticed and explained in the description of the triturating surface, as due to the atrophy of the onter region locing less adranced in Tit. cisenociensis than in the more recent species.

To proceed now to a closer examination of the small outer roots of the mper moiars and premolars of Titanomys. In a passage, quoted abore, p. 410 , from II. V .

Meyer's posthmous description of the liott skeleton, mention is made of upper molars of Titunomys found isolated, but only one small outer root is ascribed to them. I likewise find that the anterior milk-tooth, d. 3, of the Rott skeleton has one small outer root. Almost all the isolated teeth at my disposal, of both species, exhibit two symmetrical outer rootlets, which represent the lower free terminations of two prominent ridges on the upper outer region of the tooth, as in the figured deciduons tooth of Lepus Pl. 39. fig. 9, b), with the difference that in the latter the posterior part of the first appears higher, and the ridges, therefore, more lengthened than in Titanomys. The ridges, of which the onter rootlets are the lower terminations, are present also in molars and premolars of all Lagomorpha growing from persistent pulps. Figs. 7 and \(S(\mathrm{Pl} .39\) ), representing germs of the first upper true molar of a rabbit, show them in side riew (at the right side of the figures).

In a left mper jaw of Titcmomys Fomtumesi the roots of the cheek-tecth are described in the following mamer by Deperet:-"La disposition des racines est aussi très particulière, et diffère de ce que l'on roit ehez les Léporidés pour se rapprocher d'autres groupes de Rongeurs tels que les Spermophiles. Chacune des quatre dernières molaires porte trois racines, dont une interne grosse, oralaire transversalement, et denx externes relativement trós petites et arrondies. L’alvéole de la première molaire est petit et rond : il amonee une molaire uniradienlée et is comronne assez petite" *. The figure of the specimen \(\dagger\) shows the empty atreoli of p. 2 and m .1 , so that the mode of disposition of the roots in the jaw em be seen. Deperet's description is confirmed and supplemented by the figure which I give (Pl. 36. fig. 2:3) of a lelt maxillary from which the teeth have dropped out.
P. 2 of Til. risenoriensis, the anterior lobe of which we have seen to be somewhat reduced antero-extemally ( Pl .36. fig. \(1!\) ), as compared with the posterior teeth, has only one outer rootlet (Pl. 39. fig. 5(1); in the place of the antero-external rootlet it displays a eurions conformation, which gives at once a chue to that of the rootless molars of the other lagomorphous genera, and explains why the upper teeth described by H. r. Meyer have one onter rootlet only. There is no free antero-exterual radicle to this tooth; but, as seen in the side-riew (fig. \(\overline{5}\) (". Pl. 39), a raised ridge runs along its mentero-external side down to the bottom, where, as shown in the lower vicw of the tooth (fig. 5, 引), it is confluent with the lower opening of the large inner root, the homologue of the widely ojen carity in the genera (Lagopsis, Prolagus, Lagomys, Lepus) with rootless teeth.

To judge from its atveolus, p. .2 of Titanomys Fontumesi was more like p. 1 and the true molars, than p.! of Til. visenotiensis.

Fig. 2, Pl. 39. represents (11) the anterior, and (b) the outer view, of the last upper molar, right side, of Til. Fontumesi, the pper view of which has been figured in Pl. 36. fig. 6. Both onter rootlets are brekem off, hat they seem to have had a free

\footnotetext{
 t. iv. 1. 171 (1887).

十Op. vit. pl. xini. fig. 19.
}
termination like the teeth anterior to them (figs. 1, 13, 19). The outer view (b) shows the whole of the onter side devoid of enamel.

The lerelling effeet of trituration tends to produce a more lophodont claracter of the erown. In an unworn condition, howerer, these teeth present a mueh more bunodont appearance, and it requires a very small effort of imagination to trace them back-eonspicnonsly so the intermediate in the series, which are more typical-to a more hrachyodont as well as bonodont form, in which the predominant feature is that the eusps, while the interrening enamel folds would appear as shallow valleys, are not yet filled with cement. We meet with such brachyodont types in the Eocene (classed as Creodonts and Lemuroids); more than any other, the Eocene "Pelycorlus hetreticus Rüt.," and Plesind(upis, both so-called Lemuroids, show teeth in close agrecment with Titanomys. Let, cice versé, a braehyodont molar of the shape of "Petycodus, hetreticus" (Pl. 36. fig. 3) or Plesiatetenis (Pl. 36. fig. 2) become somewhat more hypselodont by the heightening of its shaft, and let the valleys between the cusps be filled with cement, and the result will be a Titmomys-tooth. This I had in riew when, on a former oecasion *. I stated that the structure of the lagomorphine molar can be traced baek to a "pelyeodoid type."

\section*{ン. Gemis Prolagus.}

Layomys, ( F . Curier, Oss. foss. ir. pp. 21, 22 (1812), sce. ed. iv. pp. 200, 203 (1823) ; Rud. Wagner, Kastner's Arch. f. d. ges. Naturlehre, xr. pp. 1.t, 18 (1828) ; id. Oken's lsic, p. 1136 (1899) ; p. p. II. v. Meyer, Neues Jahrb. 18.36 , 1. 5 h ; p. p. id. Foss. Säugeth. ctc. von (Eningen, p. 6 ( 1815 ) ; Waterlouse, Nat. Hist. Mammalia, ii. p. 32 (1818) ; Lartet, Not. Colline de Sansinn, p. 21 (1851); p. p. Fraas, Württ. naturw. Jahresh, xxvi. p. \(1 / 1\) (1870) ; Lyydekker, Cat. Foss. Mamm. Brit. Mus. i. pp. 256, 257 (1885), v. p. \(3: 50\) (188i).

Anoema, Künig, Icones Foss. Scetiles, pl. x. fig. 120 (18? 2 ).
Prolagus, Pomel, Cat. méth. p. 43 (18.氵3).
Myolayus, Hencel, Zeitschr. dentsch. geol. (ics. viii. p. 695 (18.06).
Accheomys, Fraas, Württ. naturw. Jahresh. xviii. p. 130 (180,2).
G. Cuvier was first to recognize that some fossil remains, whieh belong to the above genus, are those of a lagomorphine Rodent; he figured and described them from an ossiferous breceia of Corsica, and later from a breccia of Sardinia, considering them to be a species of Letgomys.

In 1825 König figured, in his 'Ieones Foss. Sectiles,' a skeleton from Eningen.
II. r. Meyer (1836) notes among the Mammals of Eningen the genus Larjomys; the same, aceording to Murchison, had heen prerionsly suggested hy Lamillard t. H. r. Mever further supposes that König's Anoemu might belong as well to the former gemes.

From the Miocene of Sansan (Gers) and Venerque (Haute-Garome), Lartet mentions a lagomorphine Rodent of the size of a large rat, thich he proposes to unite with
* P. Z. S. 189?. p. 208.
\(\dagger\) li. I. Murchison, "On a Fossil Fox found at (Eningen, near Constance," Trans Gool. Soc. Lomdon, iii. ?, p. 2.5 (18:32).

SECOND SERTES.-ZOOLOGI, VOL. VII.

Layomys, on account of its having one superior molar less than the genus Lepms; adding, however, that the Sansan fossil has one inferior molar less than the existing Lagomys.

For this same Rodent from Simsan, Pomel proposed to create the sub-genus Prolugus, on the ground of its differing from Layormys "par la dernire molaire inférieme, qui a trois prismes par rémion de la cinquième molaire à la quatrième. Du reste, lat premiere est anssi triangulaire. On pourrait nommer l'espèce Prolugus sensaniensis." The hypothetical fusion of two molars, stated here as an undoubted faet, does not stand elose investigation, any more than in the case of Titemomys. But to this I shall return in the sequel.

An excellent description of the remains of the lagomorphine Rodent from the ossiferous breceia of Sardinia is given by Hensel. He founds on them his new gemes Myolugus, and points out that one of the two Lagomyida from Qaningen, Lagomys Meyeri, v. Tschudi, is elosely related to the Sardinian fossil, and therefore likewise to be placed in the genus Myolagus. (It is a pity that the perfectly well-eharacterized Myolagnes has, for priority's sake, to give way to P'omel's "Prolagns," just as it is to be regreted that Pomel's amply-described Lagodus has to stand back before II. v. Meyer's imperfectly characterized 'T'tanomys.) Hensel refers to Pomel's P'rolugus *, and rightly observes that the characters mentioned by the latter writer reall to mind the grenus Myolagns ; he considers them, howerer, to be insufficient for a decision. This was quite true at the time when Hensel wrote. It is incorrect to say, as has been done by H. v. Meyert. that Hensel hased his genus uniquely on the form and mumber of the lower eheek-teeth and the position of a formen mentale. 11 ensel had laid great stress also on the pattem of the apper teeth \(\ddagger\), a chamacter which H. \(r\). Meyer, as in the ease of Titenomys, studionsly aroids diseussing.

A step, backward is made by Fras, when he figures and describes a well-preserved mandibular rannas from Steinhein under the name of Areheomys steinheimensis. He was set right by II. v. Meyer §, who refered the supposed Arelucomys from Steinheim to "Latgomys (Myoleigns) Meyeri, Tschudi," and in 1570 he atoned for his mistake by giving a fiull deseription of the Steinheim liodent in question.

\section*{Prolagts feningersis.}

Anoem" c'minyensis, König, Icones Foss. Sect. pl. x. fig. 120 ( 1825 ).
Layomys (pningernis, p. p. I1. v. Meyer, Neu. Jahnl). 1. 58 (J8:36).
Lafom!s: rninyensis, Waterhonse, Nat. Ilist, Mam! alia, ii. p. \(3: 2(1818)\).
Lagomys Megeri, s. Tschudi, in II. v. Meyer, Kur Fauna d. Vorwelt. Foss. Sängeth. etc. Von CEningen, 13. (6, ph. ii. figs. 2, 3, pl. iii. lig. : (18 J5) ; Lydekker, Cat. Foss. Mamm. Brit. Mus. i. p. 3.3f (1885).

Lagom!.s sthsaniensis, Lartet, Not. Coll. de Sansan, p. 21 (1851).
Prolay!es sunsanionsis, Pomel, Cat. méth. p. 1:3 (185:3).
```

* op. cit. p. Toz.

```

```

\ddagger Op, cit.p. 895. §Nen. Jahrb. 1854, p. 197; 186.5, p. St3.

```

Myolayus Meyeri, Hensel, Zeitsehr. dentech. geol. Ges. viii. p. 699 (1850) : Fraas, Württ. naturw. Jahresh.
xxvi. p. 171, pl. v. figs. 2-16 (1870) ; Schlosser, Palæontogr. xxxi. p. 28, pl. xii. fig. 44 (1884).

Archremys steinleimensis, Fraas, Württ. Naturw. Jahresh. xviii. p. 130, pl. ii. fig. 19 (1862).
Lagomys (Myolugus) Meyeri, II. v. Meyer, Nen. Jahrb. p. 197 (1864), p. 81.3 (1805).
Layomy.s rerus, p. p. Fraan, Wïrtt. Naturw. Jahresh. sxri. p. 171 (1870).
Prolagus Meyeri, Depéret, Areh. Mus. Lỵon, iv. p. I23. pl. xiii. figs. 18-18e (188i).
Myolugns sansaniensis, Filhol, Am. Scienc. néol. xxi. p. 16, pl. i. fig. \& (1891).
Layomys (Prologus) Meyeri, Depéret, Arch. Mus. Lạon, v. p. 55, pl. i. figs. 30, 31 (1802).
When publishing his first note on Lagomys-like Rodents from Eningen (1836), If. v. Merer was not, aware that two rather different forms ocem there; he comprises them both under the name of Lagomys animgensis. Later on, in his Monograph of the fossil Vertehrata from Eningen, he arlitrarily sets aside König's specific name for the smaller form, for which he adopts a manuseript name by v. Tschudi, Lagomys Mryer, found on one of the labels, while he respres the name Latomys arningeusis for the larger form. Is stated before, the same anthor identified the lagomorphine Rodent from Steinheim with the smaller form from Cningen; and in the sequel equally those from several other Miocene deposits in Giermany

On the gromed of Pomel's deseription of the Sansan species, Echlosser adds Lagomys (Prolugus) sanseniensis, Pomel, to the syonyms of Jyolugus Meyeri; and likewise the Lagomyide from the spitzherg in the lies, near Nordlingen (Bararia), referred to Lagomys rerns, Hens., by Fialas (1870). Filhol has tigured as Myoluyns susaniensis (E. Lartet) the type-specimen, a mandibular ramus, of Lartet's Largomys sumsuniensis, and is satisfied that "cette espèce, comme on le verra par l'examen de la figure grossie que nous en domnons, était très différente de tontes celles qui ont úté décrites" ". It is precesely this enlarged figure of the lower cheek-teeth which shows conelnsively that the Sansan tossil is one and the same with the Prolagus species from Eningen and Steinhein, as coujectured by Sehlosser and contirmed by Depérett, who has added La Grive-Saint-Alhan (Isere) \(\ddagger\), Mont-Ceindre, and Gray \& to the localities of this widespread Middle Miocene species.

The following descriptions ape hased on specimens collected at La Grive-Saint-Alloan by myself.

In the genus Proletgus the molass are no longer rooted, and, with the exception of the deciduous tecth, all the cheek-teeth ghrow from persistent pulps. It does not, however, follow that the tritmating surface preserves throughout the animal's life the same pattern. This is the usually accepted lelief || but although the proofs to the contrary

> * Ann. Sic. Géol. xxi. p. 47. pl. i. fig. \& (1891).
+ Areh. Mus. Lyon, v. p. 57 (1892).
\(\ddagger O_{p}\). cit. iv. 1. 167 (1885). v. 1, . 89 (1894).
§ op. cit. г. pr. 5 T.
 the Rodentia with luminated teeth (" Bhatter\%ihne "), including the Lagomorpha. He says of them: "Die Kantaichen dieser Zahne ändern ilıre Zeichnung durch Ammoung nicht." He might have known leetter. at least as regards the Hares, from what Milgendorf had said ten years before (Mouatsber. K. Mreuss. Akad. d. Wissenseh. Berlin, it Jez. 1465 , p. (6:3) respecting the uppre grinding-teeth of young Hares.
are not in all cases so evident, and so surprising at the same time, as in the group under consideration, or as in Geomyide *, or Maplodomlia \(中\), it is nevertheless a fact that neithor in Rodents nor in Mammalia generally is the sufface of the crown absolntely identical throughout its length ; although in many of them we may speak of a relutive constancy of pattern.

Hensel, in the description of the upper teeth of Prolagus, has overlooked this circumstance, and as a result has in one case wrongl? interpreted the tooth-structure. This oceurs in the deseription of "IFyolegns sardus; "中 but, since Fraas las endorsed Hensel's crror in his description of Prolugus a'ningensis (Kön.) (" Myolagus Meyeri") §, which diflers very little from the former, we shall have to deal with the argment in the present description as well. How little both Hensel and Traas were aware of the change of pattern depending on the age of the anmal is shown by the way in which, for comenience sake, they stndied the tooth-cromn. Hensel does not figure the matural surface of attrition, but gives transverse sections of it \(\|\); while Fras declares that it is more convenient to examine the teeth from the inferior side, meaning the open alveolar end of the shaft!

Fis. 21, Pl. 36, represents the four upper grinding-teeth of Prolagus aningensis in a rather wom condition. Both the upper true molars, the fourth and fifth in the series, those teeth which in Titanomys exhihit a beginumg of reduction on the postero-extermal side, have undergone in Prolugus wningensis a considerable change as compared with the same teeth in the former genus. Of the two more or less erescentic enamel folds of Titunomys, only one, apparently the imner, persists, in the form of a rery small enamel islet in the posterior part of the triturating surface ( \(t\) ). The noteh of the internal side ( (1) has heen transformed into a transterse enamel fold, which, as we shall find to be likewise the case in Layomys and Lepus, approaches the outer side of the tooth. The enamel lining of the outcr side, partially interrupted in the postoro-external corner of m. 2 of Titunomys, is almost entirely missing in the external lorder of both the molars of Prolagus (and of its posterior premolar as well). In other words, the outer parts of the crown, those which are the least affected ly trituration, have degenerated in consequener of disuse; and we might be inclined to assume that eompensation has been effected by the tramsrerse fold penetrating towards the outer part. But this is not, to all apparance, the exact explanation of the phenomenon. The triturating surface in the tooth of the young ammal-in the part of the shaft which is the earliest formed-is more square than in the arkut ; in the latter, it presents the well-known narrow transverse shape of the lagomorphine upper molar. If we remove one of these teeth from its socket and examine it from the anterior or posterior side, it can be seen that,
* (. Hart Merriam, 'Inonographic Licrision of the l'ueket Gophers. Family Geomyidx' (North American Fama, 110. (n), pl. 16 (1.995).

\(\ddagger\) Zeitschr. deutsch. geol. Ges. viii. 111. 690. 6901 (1606(i).

"Bhe Buckenzähne sind stets senkrecht zu ihrer Axe angeschliffen worden, daher sind die Abbildungen eigentlich cine Aneinanderreshugg der emzelneni Querschnitte" (I.c. p. F(r3).
- Op.cit. p. 173.
while its outer border maintains throughout its height almost a vertical dircetion, or is even concave, the inner part of the tooth slopes down medially, from below to above (taking into account its natural position in the maxillary). The tooth, therefore, as it contimes to grow, extends persistently in a transverse direction ; but this growth takes place chiefly, if not exclusively, towards the internal side; so that the trimsformation of the internal notch of the Titenomys-tooth into the transverse fold of the true molars of Prolegus is not the result of its extemsion outward but inward. In other words, new formation takes place in that part of the tooth where there is increased work, while the outer part-that which is searcely or not at all affected by trituration-not only remains stationary, but eren becomes atrophic.

On the other hand, since in the more specialized forms, beginning with Prolungs sardus (Pl. 36. fig. 24), the transrerse enamel fold reaches almost the outer side in the true molars, it is very possible, and even likely, that secondarily a slight extension ouncerd of this transverse fold takes place; although the outer border of the tooth is nearly functionless, its condition, almust devoid of enamel, would nevertheless effect a too rapid wear of the dentine if some compensation were not ensured.

The posterior of the three premolars, 1. 1, situated between the first molar and the second premolar, is intermediate in shape as in position. Both the crescentic enamel folds of Titanomys are preserved in this tuoth in the shape of central enamel islets, a much larger interual one (b), with an elongate anterior horm, and a smaller outer one (c) (fig. 21). The transverse fold (i) which opens on the inner side is much shorter than in the molars; it is scarcely more than an elongate notch. To put it otherwise, as compared with the molars, p. 1 presents less refluction in its extemal part, and less new formation in regard to the transverse fold starting from the inner side. Exactly the inverse is apparent when we compare p. 1 with the tooth in front of it.

This latter (p. 2) has triangular contours, with the ales internally, a shorter, slightly convex anterior, and a longer posterior side; as a consequence, its outer border rums obliquely. In its pattern, this premolar strongly resembles the Titanomys-teeth; instead of a trausverse enamel fold we find in it a short notch (a) on the inner side, as in Titenomys; while almost the whale of the crown-smffece is oceupied by the two creseentic enamel folds ( \(\langle\) and \(c\) ), with an indication of a minute third one-equally marked in Titenomys-on the anteru-extemal corner. The latter is more distinct in yomger specimens of Prohtigus aningensis (Pl. 36. fis. 10, p. 2). The enamel folds alternate with crescent-shaped, pointed cusps.

On comparison of p. 2 with \(p .1\) it becomes at once clear that the main difference between the two consists in the circumstance that the crescentic cnamel folds in the former hare become reduced to the coudition of enamel islets, their commmication with the antero-external margin of the tooth having ceased. When deseribing p. 1 of Proluyets surdus, in which, as a comparison of one figures shows, this tooth (fig. 21, p. 1) is ahmost ideutical with its homologue in \(P\). ceninyensis, Hensel labours noder a strange misconception. He says:-"Das Merkwïrdigste aber an dem Zahn sind zwei isolierte Sehmelzeylinder. Sie befinden sich in dem äusseren und hinteren Viertel des Zahnes." *
\[
\text { * } u_{p} \cdot \text { cit. } p \cdot c 00 .
\]

After describing these enamel cylinders accurately, he contimes:-" Der Inhalt dieser beiden kleinen Cylinder ist ganz gewiss Zahnbein, obgleich eine mikroskopische Untersuchung micht angestellt werden konnte. Man sieht aber an dem Wurzelende des Zahnes die beiden Cylinder, sowie den ganzen Zahneylinder, hohl, daher sie auch wie dieser sich später wohl mit Zahbein füllen werden. Wir haben hier ein Beispiel einer Zahbildung, die bisher noch nicht beobachtet wurde. Demn hier ist nicht eine Vercinigung cinzelner Cylinder zu einem Canzen wie bei den sogenannten zusammengesctzten Zähnen, sondern eine Einschachtelung' "[inchasion]" zweier cinzeher Zälmehen in einen grossen." *

It seems strange that so accurate an observer shonld not have perceived at once that the islets ("isolierte Schmelzeylinder ") of p. 1 are the homologues of the two chamel folds which, on the preceding page, he had deseribed in the anterior tooth (p.2); and that an enamel fold whose central part dijs rertically, and deeper in the shaft of the tooth than the peripheral, generally becomes ly attrition reduced to a central islet This is a phenomenon of the most common occurrence in tecth of all Mammalian orders. Hensel's misconception is intelligible only from his apparently not being aware that tecth growing from a persistent pulp, like the brachyodont teeth, though only to a certain extent, are liable to changes in the pattem of their tritwating surface.

As a matter of course the enamel islets of \(p\). 1 are filled with cement, as are the enamel folds of the anterior tooth. The argument adduced by llensel goes for nothing, as not only the dentine, but also the cement is always missing in the root-ends of these teeth, hoth substances being not yet developed in these yomger stages.

As mentioned on a preecding page. Fraas has endorsed Mensel's statements, when describing the similar-fashioned p. 1 of \(I^{\prime}\). crninyensis. Ife is, besides, of opinion that the decidnons teeth furnish the explanation of the conformation of p. 1 :-_" Die Betrachtung der Milchzaihne wirft anf diese in der That ron allen bekannten Kähnen abweichende Bildunsweise ein Licht." \(\dagger\) A smposed extraordinary phenomenon calls for an extraordinary explanation, and this he gives when descriling the decidnons teeth \$. He means to say that there is a comection between the roots and the enamel folds. inasmuch as the cylindrical roots are inchuded in (or by) the tube composing the whole tooth, as it were, nested in it (" (eingeschachtelt ")-just as we should speak of willow-boses nested one into the other-the folds appearing on the surface of attrition, according to this theory, being hat the mper cunds of the cylindrical roots! The only thing which the author thinks remarkable is the fact that the central folds, whieh are in connection with the roots, are present as well in the permanent teeth which are devoid of roots. At the bottom of this singular theory lies, first, the anthor's initial statement, to the

\footnotetext{
* Op. cit. p. 6991. it Op.cit. p. 175.
\(\ddagger O_{p}\). cit. pp. 177, 178. "D Die Falten.... die auf der Kaufliche des Zahns zu Tage treten sind nichts anderes, als die oberen Enden der in die Zahnhichse eingeschachtelten Wirzelcylinder. Sehon wir somit an den Milchbackenzahnen auf deren Oberflache Schmelzfalten zu Tage treten. wo die Wurzeh sich vereinigen, so begreift sich diesur Faltenschlag lcicht. Das Eigenthimliche ist mur, dass sich die inneren, mit den Wurzch zusammenhängenden Falten auch an den permanenten Zähnen zeigen, die nher ihre ganze Itaner wurallos sind. Es ist diess, so zu sagen, die Ucbertragung eines Jugendzustandes auf das Alter.... etc.
}
effect that the roots of the deciduous teeth of Prolugns have a coating of enamel: "sie bestehen genau ans derselben Schmelzmasse, wie die Zahnbüchse selbst, die das Zahnbein umgicht" * ; and secondly the fact that in some instances he seems to have mistaken for roots what in reality are the tube-like lower terminations of the enamel folds.

In the first tooth of the upjer series (p.3, Pl. 36. fig. 21) the two enamel folds are also present; ther penctrate into the surface of the crown from its auterior side and rim in a longitudinal direction. The anterior border (" wall") of the triturating surface, ahready slightly shortened in p. \(2 \cdot\), is still more shortened in p. 3, heing reduced to a short longitudinal stmmp on the antero-internal comer.

From what has previously been stated, we are prepared to find, in different stages of attrition of these upper teeth, some difference in the pattern ; this is, in fact, what takes place. The enamel isfet of \(m\). 2 has disappeared in old specimens; and such is the case in the specimen figured by Fraas \(\dagger\). The enamel islet of \(m\). 1 varies in size according to age, being larger in younger specimens. The same holds good with regard to the two enamel islets of p. 1. We anticipated that in young stages of this tooth the enamel islets would have the shape of cnamel folds opening freely on the margin of the tooth, as is the case in p. .2. This is, in fact, what happens in youry specimens of the following species ( \(P\). setrdns). Of \(P\). aninyphsis I have no very young examples.
P. 2 varies little with are; the noteh on the imner side is more distinct in comparatively young individuals, and there is shown in this stage (fig. 10) at third very small enamel fold in the postero-external corner of the tooth, which soon disappears by attrition.

Deciduous upper teeth of P '. coningensis.--Fras has ligured the three deciduous upper cheek-teeth in situ \(\$\); he scarcely describes their pattern, contenting himself with the statement that the anterior one is well provided with folds ("faltenreich"), and that it presents much resemblance to the second of the permanent dentition §.

I have only detached upper deciduous teeth, five in number. Two of these are in the British Masenm, mder M5237, from my collections. The anterior milk-tooth (d. 3) is not represented among these five detached treth ; according to the figure of Fraas, and to what I know of the same tooth of \(P\). surdus, it has triangular contours; while the detached teeth at my disposal are squarish oblong, almost tetragonous, their transverse diameter slightly exceeding the longitudinal. They show (Pl. 36. fig. 29) an internal noteh and two enamel folds, the latter opening freely on the outer side. The internal of the two folds (b) has the form of a crescent and is the larger of the two. The roots are three in number; the outer two very minute, the inner single one considerally larger ; the former run parallel with cach other, but not with the odd inner root, which strongly diverges from them inward, while they diverge outward (Pl. 39. figs. 2l, 22).

Prolages sardes.
Layomys surdus fossilis, Rud. Wagner, Oken's 1sis, p. 1136 (28:9) .
Lagomys fossilis, Id. op. cit. p. 1139.
* In this there is some trnth; see above, pp. 446, 447.
\(\dagger\) Op. cit. pl. ii. tig. 6. \(\ddagger\) Op, cit. pl. ii. fig. 14.
§ P. 17T.

Lagomys corsicamus, Rud. Wagner, op. eit. p. 1139 ; Giebel, Fanua d. Vorwelt, i. 1. 99 (18.17) ; Gervais, Zool. et l’al. franç., first cd. p. 32 (1848), second cd. p. 50 (1859); Lortet, Arelı. Mus. Lyon, i. p. 53, pl. 8 (1873).

Hyolayus surdus, Hensel, Zeitschr. deutsch. geol. Ges. viii. p. 695, pl. xvi. figs. 7, 8, 11 (1856) ; Forsyth Major, Atti Soc. Ital. Milano, xr. p. 390 (IS73) ; id. Kosmos, vii. (vol. xiii.) pp. 6, 7 (1883).
Layomys (Myolugus) sardus, Schlosser, Palæontogr. xxxi. p. 29 (188-1).
Layomys sarolus, Lydekker, Cat. Foss. Mamm. Brit. Mus. i. p. 250 (1885), v. p. 325 (188\%); Schlosser, Pal. Ocstr.-Ung. viii. p. S6 (1890).

This Pleistocene species, which is somewhat larger than its Midde Niocenc forermner, closely resembles the latter in its upper molars, as the comparison of the figure shows. Howerer, the specialization of the true molars has progressed, for in the teeth of the adult no trace remains of the two crescentic enamel folds (Pl. 36. fig. 9 t ). P. 1 agrees in the two species. P. 2 is scarcely different in either ; the enamel folds in p. 2 of the adult Prolegus serfolus are slightly reduced in size, and the larger inner fold (b) is, in old specimens, sometimes shut ont from the outer border ly intervening dentine (fig. 21, p. 2). P. 3 has its anterior "wall" somewhat more developed than in Prolugus eningensis.

Of this species I have collected a good number of young specimens. The examination of younger stages of the teeth is of considerable interest, as they recall, more than the adult teeth, the primitive features of the Tilenomys-type.

Firstly as to p. 2. This tooth, being the most conservative, shows, as might have been anticipated, the least change from young to old. The diminutive postero-external enamel fold, howerer, which we met with in a moderately young specimen of \(P\). ceningensis, is visible only in very young individuals of Prolatpus surdus.
P. 1, as has been intimated above, exhibits in the yomg stage a close approach to p. 2 ; the two enamel folds are not yet reduced to the shape of islets, but open freely on the outer side of the tonth ( Pl .36 . ftg. 11) ; the only appectiable difference, apart from its square ontline, consisting in this, that the crescentie eusp (6) which divides the two cnamel folds has its anterior horn less produced ontward, so that the folds unite in a common delta on the outer side. The next stage of the still young p. 1 (fig. 16) is the pattern we met with in old p. 2 ; the small external enamel fold (c) alone opens on the outer side, while the larger intermal fold has been reduced to the shape of a crescentic islet (b). The third stage is that of the adult, the external fold likewise having become an islet (fig. 2t).

It might be expected that very old specimens of p. 1 would show the complete disappearance of the islets, as is the ease in the true molars; this condition I have never found in Prolngus sardus, although I have had the opportmity of examining more thon a hundred upper jaws. But it occurs in a Pliocene form of Continental France (Thoussilion), of which more will be said hercafter.

In the yomgest stages of the anterior true molar (fig). b, in jaws which still preserve the deciduous dentition, remains of the two enamel folds are still visible; they are very imperfectly divided by the last trace of the once powerful intermediate ensp. In a slightly more adranced stage (Pl. 36. fig. 16 (m. 1), one or two diminutive enamel islets, situated postero-externally to the internal end of the transverse fold, are the last restiges
of the enamel folds of m. 1. In tare cases, very young m. 2 likewise show at the samm place a diminutive circular enamel islet, fig. 10 (1n. 2).

The decidnous teeth (Pl. 36, fig. 4.) are scarcely different from those ol the precediag. species; but in these teeth also the erescentie cusp " 6 " does not completely divide the two enamel folds. D. 3 is triangular; d. 2 in younger stages somewhat approaches to a triangular contow.

Proligus loxodes (Geyt.).
Lepus sp., Gervais, Zool. et Pal. Fr. 1"éd. i. p. 32 (1848).
Lepus loxodns, Gervais, ib. ii. explic. pl. xxii., pl. xxii. fig. 9 (1848-52).

? Layomys (Prolagus) corsicunus, Depérct. Mhm. Soc. Giéol. France, i. p. iff (1890), iii. p. 129, pl. xii. figs. 1, 1 " (1892).
? Myolagus elsamus, Forsyth Major, Atti Sor. Tusc. Sc. Nat. i. p. 229, 2:38 (1875), ste. (vide infre).
Gervais' Lugomys loxodus has been a stumbling-block for fifty years, owing, as I think, to the eireumstance that the pattern of the four posterior right upper eheek-teeth preserved had not been grasped and was ineorrectly represented. In inspection of the original specimen wonld at once settle the question; but since I am not acquainted with the original, I must deal, as best I can, with the published figure and Gervais' incomplete description.

The figure is four times natural size. Gerrais' description runs as follows:-"Diffère des Lagomys actuels et diluriens par la forme oralaire et sulbosangique des doubles lobes de ses seconde ì quatrième molaires supérieures; la molaire antérieure est en même temps plus forte, et elle a ses replis phus compliqués;-taille sensiblement infériente à celle du Lapin de Gareme"*. It was fomed in the town of Montpellier, in the fluviatile Pliocenc marls \(\dagger\). At the same locality, monder the Palais de Justice, was found the Semopithecus monspessuldurs; and this cireumstance is of importance, as proving that these fossils belong to the older of the two faunas, mixed together under the designation Montpellier. Semnopitheches oceurs also in the Lower Pliocene of Casino ('Tuseauy).

The reason for which Gervais considered the teeth to be the first, second, third, and fourth is obrious; the last in the series is equal in shape to the penultimate, while in Lagomys the last molar has a postero-internal appendage. I believe them to be the seeond, third, fourth, and fifth ( \(1.2, \mathrm{p} .1, \mathrm{~m} .1, \mathrm{~m} .2\) ) of a species of Prolayus, because the anterion tooth has the characteristic triangular outline of p. 2 of Prolagus, with the apex turned inward (cf. pl. 36. figs. 10, 21, 24, p. 2). In further agreement with Prolagus, Gervais' figure of this tooth exhibits on the outer side two cnamel loops; on the inner, one. The more minute features of this tooth, as well as of those following behind, were not recognized, and therefore the latter have heen represented in the manner in which lagomorphous upper teeth generally were and still are, fontuded on the belief that they are composed of two distinet lamelle elosely connected.

In my opinion there is not the slightest doubt left that we have to do with a species
* Zool. et Pal. Fr. 2e ed. p. 50.
\(\dagger\) L. c.

SECOND SERIES.—ZOOLOGY, TOL. VII.
of Prolagus, and I feel sure that a close examination of the fossil, if it still exists in the Museum of Montpellier or clsewhere, will confirm my view.

It remains to enquire whether there is some reason for identifying it with one of the species of Prolayies found in deposits contemporaneons, or approximately so, with the strata of Montpellier in question. Of these there are two: (1) Prolagus (Myolagus) elsemus, which I have mentioned from the lignites of Casino, in the Val d'Elsa, Tuseany; and (2) "Layomys (Prolugus) corsicumus," described under this name from Roussillon by Deperet *. The little I have to say of the former will be stated in a separate paragraph hereafter.

As to the latter, Depéret declares that it agrees in size as well as in all other characters with the Prolagns from Corsica and Sardinia, and he therefore describes it under the abore name. This proceeding is as it should be; so long as no differences are traceable between both there is no reason for two speeific names. But, so far as my own experience goes, the circumstance of a mammalian species surviving unaltered from the Lower Pliocene to the present cra (T have found calcified remains of Prolegns surdus, var. corsicamus, in an "abri sons roche" of the Neolithic period in Corsica) would be quite unique, and it is " priori highly improbable, even taking into consideration that insular species may become, up to a certain extent, conservative in their character. I therefore incline towards the belief that hereafter characters distinguishing the Roussillon from the island form will he shown to exist.

The prescnce of a third lower molar, supposed by Depéret to appear occasionally in the Ronssillon fossil, would be such a distinctive character, since it has never been olserved in the Pleistocene species; Jout I give further on (pp. 482, 1.83) what I hold to be the real explanation of the lact noticed by Deperet, viz. that the supposed m .3 in certain jaws from Ronssillon is simply a portion of m .2 , which has been accidentally detached.

Another character noticed hy Depéret in the Ronssillon species deserves mention here. [n the specimen from this locality first deseribed \(\dagger\) it was stated that the three posterior upper cheek-teeth are similar to each other, being " construites sur le type ordinaire des Léporidés." Tn the third volume ol the "Mémoires' a second specimen is described \(\ddagger\); in this the "premiere arriere-molaire" (p. 1) differs from the same tooth of the first specimen by "exhibiting on the surface of" its posterior lobe a double cherron-shaped enamel fold, recalling the molars of Tilmomys. These folds must disappear rather rapidly by effect of trituration, thas explaining their absence on the specimen previonsly digured, which apparently was more adult." Deperet adds that these chevron-like folds exist equally in the corresponding tooth in the specimens of "Lagomys corsicumus" from Bastia (Corsica), althought this character is not represented in the figure of the latter published by Lortet \(\oint\), and he coneludes that the above is a complete eonfirmation

\footnotetext{
* Ch. Depéret, "Animanx pliocines du Ronssillon," Hem. Soc. Giol. Prance, i. p. 5 (i, pl. iv. figs. \(27-35\) (15:9) : iii. p. 122 , pl. xii. figs. 1,1 e ( 1422 ).
† 1lem. Soc. Giol. Prance, i. p. 57 ( 1830 ).
\(\ddagger\) Op. cit. iii. 1. 122, pl. xii. figs. 1, 1 " (1こ92).
§ Arch Mus. Lyon, i. pl. viii.
}
of the identity of the Corsican and Sardinian fossil with the Pliocene animal from Roussillon.

1 venture to suggest that the inverse conclusion may be drawn from these statements. The eharacter in question has been figured and exhaustively deseribed in the preceding pages. Of Prolugus sterdus, I have represented on Pl. 36. three stages. Fig. 11 shows p. 1 of a young individual in which the two enamel foldings (band a) are large and confluent on the outer margin. In fig. 21 (p. I from an adult and rather old individual), they are seen to be separated from each other and reduced to the shape of central enamel islets. Fig. 16 exhibits an intermediate condition (see p. 456). If these chevrons are not represented in Lortet's fignre quoted by Deperet, this is due to an inadvertence of the artist; for an examination of the figure quoted shows that the artist had seen something of the kind, but omitted to represent it aecumaty. In the vast number of maxillaries of Proluyus surdus from Bastia and varions Sardmian localities which have passed through my hands, I have never missed the presence in p. 1 of the two enamel folds; but it is possible that they may disappear in very old individuals. 'The fact that, of the mly two specimens from Roussillon examined, this elaracter was absent in one, proves in my opimion that the Roussillon species, although geologically older, has exeeded the island species in the transformation of the eheekteeth, thus representing the last stage of Proluyns; i.e. that which approaches elosest to the condition shown ly p. 1 of Lugopsis and Lagomys.

The peculianty which \(I\) am about to mention in the anterior lower premolar of the Prolagus from Casino is not recorded ly Deperet in the lower p. 2 from Roussillon; but it would be worth while to re-examine this tooth in the specimens from the latter place: for the two Prolagi from Roussilton and Casino may be identical, if we judge from the association of other identical species in the two localities. The same may be said of the fossils from Roussillon and Montpellier; but the information concerning the Proluyns from the latter locality at present at our disposal is insuflicient for close comparison with other fossil forms.

Prolagus elsayts, Maj.
Myolayns elsamus, Forsytì Major, Atti Soc. Tose. Sc. Nat. i. (pp. 299) 238 (1875) ; id. in L. Rütimeyer, Ueber Pliocen und Eisperiode anf beiden Seiten der Alpen, p. 15 (18i(i) ; id. Atti Soc. Tose. Se. Nat. Proc. Verb. p. xc, 11 Maggio 1879.

A few fragmentary mandibular rami from the Lower Pliocene lignites of Casino, Val d'Elsa (Tuscany), preserved in the Pisa Palecontological Museum, have been long ago noticed lyy me, and I have on various oceasions stated that, ly the conformation of their lower anterior premolar (1. 2), their reference to Hensel's gemus Ityolugus (Prolagus) is beyond doubt. As at the time no species of Prolugus had been recorded from the Lower Pliocene, I felt justified in assigning a new specitic name to the Casino fossil.

Of some importance, not only as distinctive for the species, is the following character not previously recorded by me, but of which I was perfectly aware at the time, for it is shown in two sketches which I made of the lower anterior promolar, right and left, presumably of the same specimen. At the postero-intermal margin of this p. 2 is a
narrow enamel fold－more distinct in the left－hand tooth－corresponding to a shallower and wider fold in Titenomys，which forms the anterior boundary of a minute terminal cusp，marked＂\(t\)＂in the figures（Titenomys，Pl．37．figs．2，3，7，25）．More abont the significance and the homologies of this terminal cosp will be said in the chapter treating of the lower check－teeth．I mention it here，since in no other speeies of Prolagus have I met with it in p．2，and it may therefore be characteristic of Prolagus elsanus．

The only tecth known from Casino are mandibular＇；and as those from Montpellier are maxillary，no direct comparison can be made between them．Both deposits are contemporaneons，and bear other species in common；wherefore there are good grounds for assuming the specific identity of the remains of Prolugnes from the Italian with those of the Frencl deposit．If this can be satisfactorily shown in the sequel，Gervais＇specific name will have to replace mine on grounds of priority．

\section*{3．Gemus lagopsis，Schloss．}

Lagopsis verus（Hensel）．
Lagom！s armingensis，H．v．Meyer，Neu．Jahrb．1830，1．58，p．1．；id．Foss．Säugetlicre \＆e．von（Euingen， p．G，pl．iii．fig． 1 （18／5）；liedermann，Petrefueten ans d．Umgeg．v．Winterthur ：II．Die Braunkohlen von Elgg，p．13，pl iii．figs．1，2， 3 （1803）；Lyydeker，Cat．Foss．Mamm．Brit．Mus．i．p． 256 （Specim． Br．Mus．nos． 42815,42816 （？）， 42820 （？）（1885）．
Lagomys verus，Ilcnsel，Zcitsehr．deutsch．geol．（7es．viii．j．688，pl．xvi．figs．12，I8（1856）；Depéret，Areh． Mus．Lyon，iv．p． 161 ，pl．xiii．figs． 16,17 （ 1887 ）．
Titanomys weingensis，H．v．Mever，Paleontogr．xvii．p．吴踝（18\％（）），p．p．
Layomys（Largopsis）trningensis，Schlosser，Palacontogr．xxxi．p． 31 （1881），p．p．
Lagomys（Luyopsis）rerus，Schlosser，op．cit．1．：：1，pl．xii．figs．10，46，49（1884）；Depéret，Arch．Mns． Lyon，v．p． 57 （189：2），p．p．

Hensel＇s type－specimen is a mandibular ramus，and will therefore be more fully discussed in a later chapter．He was impressed by its approaching much nearer the recent Lagomys，than the remains of Proluspes（＂Aryolngus＂）deseribed in the same paper． ＂Ich nemne die Art Layomys revres，weil sic sich durch die Zahl ihrer fünf Backenzähne， durch die Stellung des Foramen mentale und durch den ersten unteren Backenzahn，der nur aus cinem Cylinder besicht，als ein ächter Lagomys answeist＂\({ }^{\text {．}}\)

It is perfectly true that this fossil is closely related to Latomys．Howerer，Schlosser proposed to raise＂Layomys aningensis，II．v．Mey．，＂and＂Laryomys verns，Mens．，＂to the rank of a geuns，Lagopsis，a position with which I in gencral agree，while I disagree in part with the reasons assigned for it．There is no doubt that some of the larger Lagomyide of Eningen，which were comprised by II．v．Teyer under the above name，are identical with Tlensel＇s Lagomys renus；lut with regard to other specimens this has not yet been demonstrated．We camot therefore throughont regard＂Layomys amingensis， H．v．Mcy．，＂as symonymous with＂Luyomys verus，Hens．，＂as Schlosser has hesitatingly assumed in his＇Noger des chrop．＇Tertiairs＇（1．32）amt more positively asserted later＇t， followed by Lydekker中．

\footnotetext{
＊Op，cil．pp．Ge8，68：3．T licitr．Pal．Oestr．－Cng．viii．p．sij（table）（1890）．
\(\ddagger\) Cat．Foss．Mamm．Brit．Mus．i．1． 250 （1855）．
}

Schlosser bases his new genns Layopsis on the differences (fiom Lagomys) in the shape of the anterior lower premolar (p.2), "und das, wie es scheint, häufige Fehlen des vierten Molaren," thereby meaning the lower m. i3. I agree with the first proposition ; as to the latter, it will be shown later on that in all the specimens of Lergomys comes, in which m .3 is missing, it has simply dropped out, for its alveohs is present.

The upper teeth of Lagopsis, which arre here deseribed for the first time, although more closely resembling Layomys than Prolugus, present, howerer, characters which strengthen the conclusion based on the lower teeth, viz. the establishment of a separate genus. Layopsis realizes the penultimate stage in the evolution of the cheek-teeth of Lagomyidie, Lagomys the last.

The deseription of the upper cheek-teeth of Layopsis may be appropriately preceded by that of Layomys \({ }^{*}\). The mumerous existing species of Lirgomys show a considerable coustancy in the pattern of their cheek-tceth. Young individuals were not available to me. In the adult we find a further step away from the Titanomys type; not only the two true molars, but the posterior premolar (p. 1) likewise, hare lost every trace of the crescentic enamel folds, so that lu. 1 has become rery similar to the true molars, all three showing the transverse fold proceeding far outward. P. a exhibits, in a very interesting manner, a reduction of the Tilduomys type. There is no transverse fold, the original internal notch being maintained; of the two erescentic cnamel folds ( \(b\) ) and (c) only the former, the internal, remains, and it bears on its onter side a strong cusp (6) and opens on the antero-cxternal margin of the tooth. P. 3 shows a further reduction as compared with Prolagus. Of the internal noteh only a fecble restige is visible, and of the two trpical enamel folds only the internal one, which puns obliquely from the middle of the anterior margin in a postero-extermal direction.

Depéret has figured from La Grive a left palate devoid of teeth, but exhibiting very distinetly the alreoli of the five cheek-tecth; he assigus this fossil, quite rightly in my opimion, to Lagopsis rerus \(\dagger\).

Among the fossils collected by myself at La Grive are two rooted upper check-teeth (Brit. Mus., G. D., No. \(52(6 t\) ), which in size agree with the lower teeth of Lugopsis verus from the same deposit. Layopsis heing the one Tertiary genns which, by the form of its lower teeth, comes nearest to Latgomys, it could be anticipated that the upper teeth of the fossil would likewise sbow a near approach to the recent genus, and this is, in fact, the case. Alditional evidence is furnished by a specimen from Eningen, to be described later on.

One of the isolated tecth just mentioned, from La Grive (Pl. 36. fig. 31), exhibits the same somewhat triangular outline-the aper being turned outward-and about the same characteristic enamel folding ( \(b\) ) as the upper p. 2 of \(L_{\text {atgomys. }}\). In the p. 2 of Letyomys the outer enamel border of the crescent (b) is raised into a strong triangular cusp, with its eonvexity turned inward ; in the fossil tooth the inner border of the crescent is raised in the same manner. From p. .2 of Prolugus ceningensis (Kön.) (Pl. 36, fig. .21) the tooth
* Enlarged horizontal sections of the upper cheek-tecth of Layomys ulfinus and L. nepechensis are given by Ifensel. op. cit. pl. xri. figs. 1 \&5.
\(\dagger\) Op. cit. p. 164, pl. xiii. fig. 17.
figured in fig. 31 can at once be distinguished; the former is much smaller, has a triangular ontline with the aper turned inward, and a smaller enamel crescent ( \(c\) ), smaller than, and external to (b). The apper teeth of Titenomys Fontemnesi, which in size come nearer to the original of fig. 31, thongh slightly smaller, are provided with roots, and they present other differenees which have already been described. From its resemblance to Lagomys this tooth (fig. :31) can therefore with certainty be determined as belonging to Latgopsis cerus. The second of the isolated teeth before mentioned, from La Grive (Pl. 36. fig. 32), agrees in size with the first; and for this reason alone Prolagus ceningensis can be excluded. It is either \(\mathrm{p}^{\text {r. }} 1\) or m . 1 , if we judge from its agreement with the eorresponding teeth in Layomys.

In the Paleontological Collection of the British Museum (No. 12815) is preserved a slab from Conirgen, showing the skeleton, "in a much erushed and imperfect condition," of a lagomvid Rodent, which Ly̧dekker has detemined as Lagomys amingensis, H. v. Mey., becanse it agrees rery closely in size with that figured by H. r. Meyer on pl. iii. fig. 1 of his 'Fossile Säugethiere ron (Eningen '*. On examimation of this specimen (No.42S15) seteral cheek-teeth are seen in a fragment of the cranium. presenting their imer sides, the bone being here broken away. The lower parts of these tecth, in the neighbourhood of the crowns, as well as these, were hidden in the matrix when the specimen came into my hands. By carefully removing the matrix, the triturating surfaces of the three anterior cheek-treth (the three premokirs) were laid bare, and it became at once apparent that this fossil is a \(L\) Lrigonsis.

It was too late to hare the teeth figured in the present memoir, so that I must content myself with their deseription. L give tigures of them elsewhere \(t\). The posterior of the three teeth (p.1) exhibits the pattern, which is shown he the homonymous premolar of Latgomys and ly the latters two true molar's. On the outer side of this tooth is a shallow and open groove, which, so far ats can be made ont mider a strong lebs, has no enamel border. From the middle of the inner margin a lozenge-shaped narrow enamel fold (a of my figures in Pl. 36) rums transversely across two-thirds of the breadth of the triturating surface towards the outer side; the posterior enamel border of this lold is raised into a strong erest, runuing parallel with the anterior euanel border of the tooth, both presenting a slight convexity turned anteriorly. The enamel fold is filled with cement in its onter narrower portion, its wider internal opening being devoid of this sulbstance.

The pattem of the middle premolar, p.o, proves that the isolated tooth from La Grive (Pl. 36. fig. 3l) has been rightly determined as p.2. As in the latter and in Lagomys, there is only a comparatively shallow internal enamel fold (ci) present in the tooth from (Eningen, the greater part of the triturating surface being occupied by the enamel crescent (b) hefore described in the tooth from La Grive. Outside the crescent (b) appears a small enamel ring filled, like the latter, with cement ; this ring is doubtless the vanishing homologue of the onter enancl crescent (c) of Tithomys and Prolagus, described in the preceding pages and figured in Pl. 36. In the La Grive specimen (fig. 31) there is

\footnotetext{


}
a mere restige of some such clement in the same place, the tooth being presumably more worn than that in the Cuingen specimen. As in the La Grive tooth, that from Eningen has both enamel margins of crescent (b) raised into triangular cusps, with the convexity turned inward.

The anterior premolar, p. 3, of the Guingen fossil is not dissimilar to the same tooth of Prolequs arninyensis (Kön.). Whereas in reeent Lrgomys the triturating surface of p. 3 exhibits only one enamel fold-starting from about the middle of the anterior margin and rumning backward obliquely, i. c. postero-extermally-the same tooth in Lagopsis shows two cuamel folds, as in Prolayus cenimgensis, opening ou the anterior margin, and thence ruming almost straight backward.

These differences from Layomys strengthen, therefore, Sehosser's opinion, that the Miocene fossil is to be considered as a genns (Lagopsis) distinct from Lagomys. It the same time they present a further link in the gradual transformation of the tooth-pattern (Tittenomys - Prolnyus-Luyopsis-Lngomys-Lepus), which begius in the hindmost molar of Lagomyide and, gradually proceeding forward, stops at p. 1 in Lugopsis and Lagomys, and at p. 2 in Lepus.

\section*{Genus Lepus s. 1.}

It would seem more rational to treat of the Miocenc l'mbeotagus before Lepus, since there are strong reasons for the assumption that the former is the ancestor of the latter. On practieal grounds, however, I think it more advisable to give the description of Lepus first, because we can fully umderstand the dentition of Prelceolngus only after having dealt with the dentition of the young of the existing genus; and because, on the other hand, the latter exhibits a further development of the modernization initiated by Titunomys.

Hensel, writing in 1850, stated that, contrary to the usinal descriptions of anthors, the upper molars of Lepus consist each of a single eytinder, which in the second, third, and fourth tecth is provided with a deep enamel fold, filled with cement and penetrating from the inner side*. When contending that all the previots writers ou the subjeet had ineorrectly interpreted the conformation of the leporine molar, Hensel eould hardly have guessed that 13 years later he might have made an almost similar complaint. We continually meet with descriptions and figures of lagomorphous animals in which the upper molars are represented as formed by two cylinders closely united or soldered together, preenting three transverse enamel ridges!

As compared with the Lagomyide, by the presence of m . 3 in the maxillary, Lepus exhibits a more primitive condition. In the characters under consideration, however, Lepus is undoubtedty the extreme member of the series. While in Lagomys the posterior premolar (p. 1) has alone acquired the transrerse fold of the true molars, in Lepus (Pl. 36. fig. 33) p. 2 has been transformed as well. P. 3 alone retaius what we may fairly consider to be the ancestral enamel folds, as well as the ancestral intemal noteh. There is no anterior" wall"; wherefore the enamel folds open freely on the anterior side.

In a skull of \(L\). niguicollis from Ceylon (13. ML. Z.D. No. 81.4.29.7) (Pl. 36. fig. 34) I find that the modernization has hegun to invade p. 3 also; in the tooth of the right side the internal notch (ii) has assumed the shape of a lengthened fold, stretching halfway across the crown and provided with plications as in the other molars.
M. 3 of Lepus is a small, ranishing eylindrical tooth; in rare cases, however, of \(L\). curoperens a transverse fold has been observed in this *.

Now as to the condition of the teeth in the young of Lepus. Hilgendorf stated long ago \(\dagger\) "that the upper cheek-teeth of young Hares are provided with a crescentic enamel tube, which forms a transition to the fossil Inyolughs." This is perfectly true, but it is not all.

In the Rabhit Oryclolngus cuniculus, the two posterior mper decidnons teeth when worn, and the permanent molars when slightly abraded (Pl. 36. fig. 5), exhibit a pattern identical to that presented lyy the two anterior true molars of Pelcooluyns, as figured in Pl. 36. fig. 36, viz, an internal noteh and a central erescentic enamel lold. Before attrition has set in, they exhilit besides as strong erescentic eusp, (i), which delimits the outer side of the enamel fold (fig. 1). On the outer side of the cusp is seen a minute and shallow enamel fold, incompletely divided into an anterior and a josterior part by a ridge desernding from the middle of the outer slope of the ensp (c, tigs. 1, 5). In d. 2 the anterior horn of the larger erescentic enamel fold stretches finther outward than in d. 1, and almost reaches the outer horder of the tooth. When attrition is going om, the shallower outer fold may be seen for a short while on the triturating surface, muder the form of one or two minute enamel islets, whicli are soon completely worn away. The deeper inner eresentic fold (b), apparently that mentioned by Hilgendorf, persists longer.

Here then we still meet with, in an mhemeral condition, the clements constituting the Titanomys-tooth: two enamel foids ( \(b\) and \(c^{\circ}\) ) soparated by a strong cusp ( 6 ) and an internal notch (a). The deciduons teeth of Lepuss. l. are cast off withont presenting any other clange except that produced by further wear (fig. 2(i). In the permanent tectlı (11. 36. fig. 17) the internal notch begins to extend. That this growth takes place, in these initial stages at least, wholly in an inward direction-ly a prolongation of the two internal cusps, which have gradually been transformed into transrerse lobes \(\$\) becomes evident when we compare these tectl before attrition and in a morlerately worn condition. Tn the former stage the creseentic fold is separated from the internal

\footnotetext{
* Hilgendorf, in Monatsber. K. premss. Akad. der Wiss. Berlin. \(1+\) Dec. Iscif, p. (itis. thirl.
\(\ddagger\) " 8 " and " 9 " in the fignres of all the upper check-tecth on Pls. 36, 37, 39. The scareity of my material prevents me from entering into particulars with regard to the young stages of other recent Leporidx. In a slightly abraded p. 2 of Capolegus hispictus (Pl.36. fig. 27), b, and \(c\) surround almost eompletely tho well-developed cusp' (6) and unite together to form a common witlet on the antero-external side of the tooth. The enamel exhibits numerous secondary plications characteristic of the teeth of this Hare. In the decidumus teeth of syluilagus brusiliensis (P1. 35. fig. 20), \(a\) and \(b\) are united and present the pattern of a brauched fork, visible also in young stages of permaneut teeth; in the latter ( 7 ), represented by the two branches of the furk, suon disappears from the triturating surface. In the trme Hares, Lepus s. str. (Pl. 36. figs. \(\because 2,20,0,2 s\) ), the primitive pattern is more ephemeral still than in the liabbit ; the enamel cresecnt ( \(h_{\text {}}\) ) is quite superficial. As is generally the case in disalpearing structures, these vanishing elements present a considerable amount of rariatiou in different specimens of the same species.
}
notech only by a longitudinal enamel ridge ; in the latter it is still in its place, while the interual notch has grown into a transverse fold stretching across hall the transverse diameter of the triturating surface *.

\section*{Upper Incisor's of Leporidie.}

The upper incisors of several Leporide present some little-known peculiarities.
In his description of Lepus nigricollis, G. R. Waterhouse says:-"'The upper incisor teeth have each two longitudinal grooves, placed very closely together, and not very distinct" \(\dagger\). About the same statement is made with regard to Lepus yarkundensis, Günth., by Büchner, who belieres this to be a special character of the species:-"Sellr characteristisch fïr Lepus yurkundensis ist der Bau der oberen Nagezähme, dureh welchen diese Art sich, wie es scheint, rom alken Gattungsegenossen muterscheidet. Die Vorderfliche des obereu Backzahne's weist nämlich zwei flache, schwach markirte Rimnen auf; dieselben vertaufen dicht neben einander auf der inneren Hälfte der Vorderthäche" \(\ddagger\).

I have before me the type-specimen of L.yorkandensis, Güntin. (Br. Mus. Z. D. No. 75. 3.30.10) ; an examination of the onter surlace of its upper incisors shows but one groore, as in other Leporide: the groove is filled with emment, but only incompletely, so that the outer and imer horder of the zone of that substance is marked by two longitudinal strixe which somewhat simulate grooves. There is hesides a median superficial depression of the cement layer, so that the appearance of three longitudinal grooves is produced. (In Cotprolagns hispillus the median hollowing of the cement is more accentuated.)

In L. nigricollis, as a rule, the appearance of two grooves is produced by the same eanse as in L. yarkandensis. Somotimes, howerer, there is in the former species a rery shallow longitndinal groore in the enamel, to the outside of the principal groove filled with cement ; the former is somewhat more distinct in the mique skull of a specimen from Ceylon in the Br. MLus. (\%. D. No. S1.1.29.7).

The fact of the presence of cement in the groore having been overlooked has given rise to another misunderstanding. Waterhouse says that in Lepus ruficumdatus the

\footnotetext{
* According to Pire Heude, the anterior upper premoln, p. 3 , of Lu pus is composed of p. 3 , thet at more anterior premolar, which latter is said to be represented ls the metian of the thre anterior lobes ( \({ }^{\circ} 16\) " of iny figures) of p. 3 . (op.cit. pp. (63, (i-4, pl. xiii. figs. 4, 5, 7, 1598). As I believe to hare satisfactorily demonstrated-althongh not,
 and true molars of all Lagomorpha, 1 think wee can, for this reason alonc, lismiss the fusion theory, since each of these posterior teeth would have to be consilered aloo as a compound of two. (Nimilar remillks apply to 1 . 2 of the lower jutw of Lepus, which, according to I'ire Heule, is \(=1.2+\) b. 3.) 1 may ald here that 1 have never observed in the upper molars or premolars of Lepus a longitudinal cnamel ridge closing the opening of the internal enamelinflection ( ( of my figures), as figured and described by Pire Heude ( \(\cdot\) fissure qui se ferme aree une lamelle d'émail chez l'adultc," op' cit. p. (65, pl. xiii, fig. 4), and mould glady learn in which speces this occurs.
\(\dagger\) G. Fi. Waterhonse, 'A Natural History of the Manmalia,' ii. p. 78 (lsts).
\(\ddagger\) Fug. Buichner, 'Wiss. Resultate der 「un N. M. J'rzewalski nach Central- dsien unternommenen Reisen,’ i. 5. p. \(19: 3\) (189-4).

SECOND SERIES.-ZOOLOGY, 「OL. VIT.
}
superior incisor " has the external groove less deep, and placed nearer to the imer edge of the tooth," than in the Common Hare * and W. T. Blanford states of Lepus dayanus, Blf., that "the upper incisors appear" very indistinctly grooved" \(\dagger\). The species mentioned are precisely among those in which the groove of the upper incisors is very deep; but they present the appearance of loing shallow, owing to the cement which incompletely fills them. In fact, the cement appears in all species in which the groove penctrates further backward than in the commonly accessible species (L. europeus, Oryctolarges cuniculus), and it is in that ease very often associated with other complications which we have now to consider.

Hodgson gives as one of the distinctive characters of Creproluyers lispidus the following :-" the groove in front of the upper incisors is continued to their entting-edge so as to notch it" \(\$\). Strictly speaking, the cutting-edge of the upper leporine incisors is always notched-eren in Lepus europaus; only, in C. hispidus (text-fig. VILI), the groove, filled with cement, is much broader and penetrates further backward, so that the natural section presented when the ineisor is viewed from its lower side (same fig.) shows the groove under the form of a repy elongated triangle, with the apex at its posterior end. A more complicated form has been noticed by Hilgendorf, as stated in the following hriel sentence:--"Die oberen Schncidezähne von Lepus callolis aus Mexico und Lepus: migricollis ans Indien sind gabelig schmelzfaltig (dentes complicati) ; die entsprechenden Zähne der afrikamischen ILasen bikden durch eine einfachere Einbuchtung des Schmelzes einen Uehorgang, ron jenen zu den anderen Hasenarten" §. In a later note by the same writer further particulars are given \(\|\). In the textfigures I-XXIV are shown, enlarged (about \(4 \times 1\) ), the principal modifications of the enamel-folding of upper leporine incisors viewed from below and with the anterior border directed downward. Some slight difterences loctween the few descriptions given by Hilgendorf and my figmes of the supposed same species are apparently due to different causes : in the first place, because Hilgendorf deseribes toothsections. Moreover, specimens of the same species may vary slightly (off. figs. XVI \& XVII), owing partly to individual rariation. But the shape of the enamel-fold varies equally at ditferent stages in the age of the animal; speeies whose incisors show the most complicated pattern in the adult have as yet no trace of this in very young animals; and, rice rerse, in very old specimens complication tends to disappear again. As shown by several of the text-figures, slight variations between the right and left incisor of the same individual also occur. 'These circumstances will, of course, have to be taken into account for systematic purposes.

The most complieated folding in Hilgendorf's material was presented by a L. callotis, Wagn. (=L. mexictme, Lichtenst.), from Mexico T, in the shape of a \(T\), whose transverse

\footnotetext{
* Op. cit. p. Th.-R. Swinhoe (Proc. Zool. Soc. Lond. 14.7, P. 234) makes a similar remark with regard to L. luinumes.

\(\ddagger\) Journ. As. Noc. Bengal, xri. 1, p. 576 (1840).
§ Sitzungsber. Berl. Ak. Wiss., Sitzg. 1t Dec. I~6.5) (1~66).
|| Sitzungsber. Ges. naturf. Freunde Berlin, Sitzg. 15 Jan. 1584, 〕p. I世-21. - Of, cit. pp. 18, 19.
}
part, turning backward, runs approximately parallel with the anterior border of the tooth, and is slightly folded from behind, so that it may be compared with an outspread fork. Figs. XVI and XVII, representing the left incisors of two specimens from Mexico in the Nat. Hist. Museum, labelled Lepus callotis, show this same form, with a slight complication of the transverse part in one of them (XVII). L. melenotis, Meams (fig. XY), firom Clapham, New Mexico, belonging to the sane group (Hacrotolugus), exhibits in the right incisor the \(\mathbf{T}\) pattern in a much reduced form, and in the left a condition approximating to that of the African L. saxatilis, of which more hereafter.

The nearest approach to \(L\). cullotis is seen, according to Wikgendorf, in L. deryams, Blf., to which species he relers also the L. nigricollis of the first note. I have figured (fig. XVIII) the right incisor of the co-type of \(L\). dayamus, from Sukkur, Sind (Br. Mus. Z. D. No. 90.f.9.2), which corresponds almost exactly to Hilgendorf's description. A nearly similar form I find to be exhilited by L. heinenus, from Hainan (fig. NIX); the folding, however, is considerably shorter, and the opening broader. In L. nigricollis from Ceylon (fig. XXI) the branches of the fork are more elongate, and the anterior opening is considerably more constricted, than in L. huincours.
L. pegnensis, Blyth, from l'egu (fis. NX), shows a finther complieation, already foreshadowed by one of the cullotis specimens (fig. XVII), there being three branches of the fork. Not much different is the left incisor-the right one is damaged-of a L. nigricollis from the Nilghiris (fig. XXII), and both incisors of L. refficumeturs (L. kurgose, Gray) from the Pmozal, (fig. XXIII). The maximum of complication known to me is cxhibited by a Loruficoulutus from Rajputana (fig. XXIV), where the left incisor exhibits a four-branched fork, the right being a slight modification of the same pattern.

Following the description of the incisors of \(L\). dayanus, Hilgendorf gives that of an undetermined skull brought home from Africa by the Vou der Decken Expedition. In this the \(\boldsymbol{T}\) with a narrow opening is still strongly marked, but the median moiety of the transverse part is reduced. The whole of the enamel-fold occupies less space than in L. denyouns, not beingg so much extended either backward or laterally *. This description applies fairly well to my fig. XIS L. Tictorice, Thus., from Nissa, Victoria Nyanza, except that the opening of the fold is not narrowed.

Figs. IX, X, and XII represent L. struthlis, F. Cuv., from Pirie Bush, King William's Town (Cape), Transvaal, and "Cape of Good Hope" respectively, in none of which is there a bifuration at the posterior end ; the folding penetrates far backward and the opening is wide, as described by Hilgendorf \(中\) in L. sucutilis. Fig. XI, "Lepus sp.", from Sena, Zambesi, is of the same patteru; and so is L. Whytei, Thos., typespecimen, from Pacombi River, Nyasa (fig. XIIt); in the latter, however, the fold penctrates further back than in figs. IX-XII, and the opening is comparatively more restricted. To this form seems to approach Hilgendorf"s specimen of "Lepus copensis,"




Anterior end of upper Leporine incisors, from below. Enlarged.

No. I. Lepus variabilis (altaicus).
II. X. variahtilis. ㅇ. \(^{\text {I }}\)
III. L. sinaiticus.
IV. L. Juhlece, Gimy, f, type.
V. L. sinensis, Gray, type.

V1. L. cumanicus, Thos., type.
VII. " L. yarkandensis?"
VIII. Caprolagus hispidus, Pears.
IX. Lepues saratitis.
I. L. suratilis, ह゙.

N1. Lepus sp.
I11. Lo suratilis.
M111. L. Whytci, Thos., q, type.
IIV. L. Tictorice. Thos.
XV. L. (Mucrotolayus) melanutis, Mearne, ơ.

IVI. L. ( ) callotis.
XVI1. L. ( , ) callotio.
SVIII. Lepas dayanus, co-type.
N1J. L. Lainamus.
NX. L. peguensis, BIf., f.
XXI. L. niyricollis, F. Cur.
XXII. L. niguticollis.

SIIII. L. reforazentutus (kuryusa, Gray).
SIIV. L. ruficaudetus.

Russia.
Altyre, Morayshire.
Mirlian, N. W̌. Arabia
l'alestine.
China.
Venezuela,
Foko Nor.
(1nd. Mus. Coll.-E'. I. Hodgson.)
l'irie Bush, Fing William's Town (Cape).
Transraal.
Sema, Zambesi
C. C. Cope.

1'acounh River. Nyasa.
Nasa, Victuria Nyanza.
('laphan, New Mexico.
Mesico.
Mexico.
sukkur. Sínd.
Mainan
Prgu.
Cerlon.
Kotagiri, Nilghinis.
Pumab.
Rujputana.

Brit, Mus. Z. D.

from Mozambique *, collected by Peters, which, however, is certainly not a Lepus capensis. The latter differs scarcely from L. etropeus, Pall., s. 1. (including L. occidentelis, de Wint.), by its minute enamel-folding, not filled with erment.

The forms whieh remain to he described (figs. I-VII) are all approximately of the same type, viz. a triangular fold with the apex turned backward; the fokd in none of them stretching so far back as in C'ipirolugns hispidus (tig. VIII), mentioned above. The pattern of the latter is approached somewhat be that of fig. VII, from a specimen labelled "Lepus yarkandensis?," trom Koko Nor (Br. Mins. Z. D. No. 94.2.2.12), exhibiting an enamel-fold with thick borders, but shorter than in C. hispidus, and with a much wider opening. It is decidedly not L. yarkandensis, Günth. The type of the latter, which is not figured, approaches in the form of the folding L. sinensis, Gray, the type of which (Br. Mins. Z. D. No. 38.10.29.23) is represented in fig. V. Both are imperfectly tilled with cement, in \(L\). sinensis still less so than in L. yarkandensis. The latter differs also from the former by the opening and the whole fold being narrower.
L. tibetemus, Waterh., has no trace of cement; in the shape of its fold it is intermediate between the former two ; the opening is slighty broader than in \(L\). yarkandensis.

The conformation of the type of Gray's' L. Tudere" (fig. IV), from Palestine, and of "L. sinuiticus" (fig. ILI), from Midian, N.W. Arabia, almost identical in both, is shown by the figures.
L. timidus, Linn. (L. cariabilis, Pall.) (figs. I \& Il) hardly difters, but still the two figures of this species show that there are slight differences between a specimen from Russia (fig. I) and one from Scotland (fig. II). In this species I have always found the enamel-fold with a filling of cement, though very often ineompleie. In L. europens, Pall., I hare never met with a trace of cement. This difference would seem to be a good character for distinguishing isolated fossil incisors of the two species: but it is probable that much-weathered specimens of L. timidus may have lost their cement.

Lepus cmmenicus, Thos., from Venezuela (Br. Mus. Z. D. No. 94.9.25.18), the type of which is represented in fig. VI, stands somewhat apart by its very narrow and comparatively elongate enamel fold.

Hilgendorf holds these complications of the enamel in the upper incisors to be a specialization, the only reason given being that in the fossil Prolayus (Jyyolayns) nothing of the kind is seen. "Phylogenetisch betrachtet, ist die bedentende Schmelzentwickhng des Lepus mexicanus gleichfalls ein Extrem ; dem die Einbiegrung der Schmelzplatte an der Vorderfläche tritt bei den fossilen Leporiden-Gattnagen (Ilyolugns) ats eine seichte Einknickung auf, deren Scitentheile fast die ganze Vorderfläche einnehmen" †. This argument would be of some weight if Prolagus could be considered ancestral to Lepus; but this is certainly not the case, although the molars of the former are of a more primitive type than those of the latter. As insisted upon in the present memoir, the Lagomyide, of which Prolugnes is a member, rum parallel with the
\[
=0_{1}, \text { cit. } 1.2 \underline{2} . \quad+o_{1}, \text { cit. } 1.20 .
\]

Leporide from the Lower Miocene (or it may le from the Oligocene) to the present time.

The incisors provided with cnamel-folds point back towards enspidate incisors, for the enamel-folds of lophodont and laminated tecth are olwiously the derivates and homologues of the "valleys" separating the cusps or tubercles. Now it is very suggestive that we meet with euspidate incisors in Plesiadapis, a genus from the lowest Eocene of Rheims, classed among the Lemuroidea by Lemoine and other writers, considered lyy Schlosser and me to be a very primitive Rodent. In the jaws of Plesitudopis the teeth are greatly reduced in number. In the lower jaw we have only one powerful clongated incisor, directed obliquely forward and upward, and separated from the five check-tecth-the premolars being already reduced to two--by a considerable diastema. On its posterior face the lower incisor las a cingulum supporting a small cusp. The upper incisors, too, are separated by a long interval from the five cheek-teeth, and appear to have been thres in umber (Lemoine considers the very small outer one to be the canine). The two onter pairs are rery small and unicuspidate; the inner pair robust, generally tricuspidate, there being an anterior pair of ensps, and backwardly an additional cusp, which starts from a kind of cingulum *.

If we imagine the cusps of these upper incisors of Plesiadrpis to have become lengthened in accordance with a gencral chamge of the more brachyodont incisors into a hyppselodont one, and their interstices filled with cement, so that by trituration a level surface can be produced, the result would be a pattern somewhat similar to that of sereral of the figured Leporide. The posterior ensp of Plesiedepis, projecting from behind into the cavity \(\downarrow\), would produce a posterior ramification like that of the Leporidie.

The test will lie in the scarch for Tertiary Leporide exhibiting an internediate stage between the condition of the upper incisons of Plesturtapis and that of recent Leporide. An examination of the incisors of Paleolngnis might decide the question.

\section*{Genus P'aleolagis.}

Palcolagers, from the Tertiary of North America, is represented by Leidy \(\$\) and by Cope § as showing in the tecth only one character distinctive from the genus Lepus, viz. the more simple conformation of the anterior inferior premolar of the extinct genus, and of this character more hereafter. When, however, we go over the descriptions, aceompanied by numerous figmes, and an examination of originals, several of which are in the British Museum, we cannot but be struck at once by some rery essential differenees in the triturating surfaces of the two genera. When do we ever meet with molars in any species of Lepus showing the complete absence of all traces of enamel, with the exception of part of the marginal horder? This is the case in old

\footnotetext{
* Lemoine, in Bull. Soc. Géol. France, xix. 1, p. 2ヶs, pl. x. fig. 50, a, b, e (1s91).
\(\dagger\) Lemoine, l. c. pl. x. fig. 50, b, c.
\(\ddagger\) Proc. Acad. Philadelphia, p. S9 (185i) ; id. 'Extinct Mammalia of Dakota and Nebraska." p. 332, pl. xxri. figs. 14-20 (1869).
§ 'The Verlebrata of the Tertiary Formatious of the W'est," i. p. ©ro, pls. lxpi., lxvii. (1883).
}
specimens of Perlcolergus. The pattrm of less worm terth, too, is rather different from what oceurs in Lepmes. In none of the mumerous triturating surfaces of Palcolagusteeth figured do we meet with a transverse fold penetrating so far ontward as in the four intermediate tecth of Lepus, and in the true molars and posterior premolar of Lagomys. This is confirmed by Copers deseription:-"The inner side of the four intermediate molars is deeply grooved for " short distanes" (italies mine; of. Cope's figures), " which gives a fissure-like noteh on attrition. This disappears after nse, as does also a less profound crescentic fossa in the middle of the crown, whose concavity is directed outward " *.

This statement, in my opinion. does not inully describe the pattem in youg specimens, which seems to le very ephemeral in Polleolugus. In a fragment of the right uper jaw of \(P\). Huydeni in the Brit. Mus. ( \(572 \overline{3}\) ), of whieh I give an enlarged figure (Pl. 36. fig. 36), the alveolus of the second premolar (p. 2) is shown, and the three teeth p. 1, m. 1, m. 2 are seen in place. The empty alveolus of the premolar suggests that in its contour this tooth very much approached the eormesponding tooth of Prolugus coningensis (Pl. 36, fig. 21), and to judge from what we find in the following tooth (p. 1) there is a strong assumption that the pattern of p. 2 of Pelcolugus also resembled that of Prolegus conimgensis. P. 1 of Palcolagns exhibits the intermal noteh (e) with which we are aequainted in Tiltnomys and in the deciduons teeth of Prolegus, Lagomys, and Lepus, and which moreover persists as snch its the premolars of Prolegus, in the second premolar of Lirgomys, and in the anterior premolar of Lepus. In the premolar of Polcolugns we find, on proceeding inward, a erescentic central enamel islet in the eentre of the crown, known already from the deseriptions and figures of Leidy and Cope. It is, too, an old acquaintance of ours ; for to all appearance it is the homologne of the large intemal enamel-fold (b) of Titcnomys, whose further history we have followed up in the other genera. But this is not all. From the antero-external corner of p .1 of Palcolagus starts an enamel-fold in a postero-internal direction, terminating near the onter end of the crescentic fold's posterior hom. No mention is made of this outer fold in Leidy's and Cope's descriptions; it is, howerer, visible in one p. 2 of Cope's figures (pl. lxwii. fig. 16 a); but I have not seen it delineated for the same tooth together with the erescent fold, as in the figure which I publish. The onter fold just described is undoubtedly the homologue of the outer enamel-fold (c) of Titanomys, and I do not doubt that still younger stages of Pelcolugus-which have been figured by Cope, but in an umsatisfactory mamer-will show a greater development of both the enamel-folds, and therewith a stronger resemblance to the pattern of the Tilcmonys-teetl and the posterior premolars of Polda; \({ }^{\prime}\)

The true molars of Pelcolagns in the specimen figured exhibit only the erescentic central islet (b) and the internal noteh. As stated by Cope in the passage quoted above, and as shown likewise by the illustrations of both the American writers, the internal notch and the crescentic islet are worn away ly attrition, without any other change taking place. In this consists the great difference between the Ameriean fossil and all the forms

\footnotetext{
* Op.cit. p. 876 .
}
previously deseribed in this paper. While in all the upper grinding-tecth of Titanomys the initial condition, two crescent folds and an internal noteh, is retained throughout life, and this is more or less so in the premolars of Proletpes, in the molars of the hatter the creseentic folds are worn away and the internal notch is enlarged to a transverse fold, s in the molars and p. 1 of Layopsis and Layomys, and in the molars and posterior premolars of Lepus s. 1. Dilk-teeth and very yomes permanent molars of Lepus show, with slight variations, the pattern belore described as characteristic of moderately-worn tecth of Palcolargis. No modernization takes place in the latter; the only change we perceive, by the further progress of wear, is the complete obliteration of the crescentic folds and of the noteli on the imer side. In Lepms, the large creseentic fold of the decidnons teeth, and a small islet external to it-present in some of the species, and representing the external erescentir fold of Lagomyide-disappear at a very carly stage of the two posterior premolars and of the two anterion trine molars, and are replaced in the permanent teeth lyy the transverse fold already described.

The permanent teeth of Pelcolugus, therefore, can only be compared with the deciduous tecth of Lepus; like these ( Pl .36 . 1ig. 26), they exhanst their primitive pattern, withont arolving a secondary me *.

Palcolayus cannot find a place in our phylogenetie series (Tïhnomys-Prolagns-Lagopsis-Layomys). With regard to the condition of their upper cheek-tecth, the species of Pelceotergns in which these teeth are known would follow after 'Titanomys. But they are certainly not the foremmers of Prolemps, except in the form of the true molars; while Prolugn's is more conservative than Pelcolayns in the conformation of its two posterior premolars. On the other hand, P'elcoolngnes is certainly the forermmer of Lepus, and presumably its ancestor; and this camnot be said of the Letyomyidre, in all of which the upper mi. 3 has heen lost.

To resume.-Wre have in the preerding pages followed the transformation in the pattern of the upper check-teeth on thee lines:-(1) Prom genus to genus; (2) from behind formard in the dental series; (3) from young to old.
(1). From genus to formes, we might ahmost say from species to species, the series is as follows:-Pelycodroid type (Pelycodus. Plesindepis) - Tilenomys risenociensis-T. Fontun-nesi-Paluolagns-Prolames aningensis-P. sarelus-Lagopsis-Layomys-Lepus.

Pelycodus and Plesiactupis are genera of the Lower Eocene.
Titnomys appears in the Lower Miocene, and ranishes in the Middle Miocene.
Prolegges apperes in the Middle Niocene and lingers on, protected by an insular habitat, until the Neolithic period.

Lagopsis is at present known only from the Middle Miocene.
Lagomys makes its appearance in the Pleistocenc and survives to the present day.
Lepus, preceded by the Oligocene and Diocene Peleculnyus, appears with many of its present generic characters in the Lower Pliocene, and survives to the present dar.

\footnotetext{
4. The remarkable Hare from sumatra, Nesoletus . Themturi, approaches Puterolugus more than other recent Leporide, inasmuch as, by the feeble development of the transserse enamel-fold (Pl. 37. fig. 17), it represents it first satge in the crolution of the secondary pattern. The samo form exhihits other primitire features, to be described later on.
}
(2) From behind forturd in the denterl series. The true molars are the first to be transformed, and successively one after the other of the premolars, the anterior premolar ( p .3 ) being the most conservative.
(3) From young to old. - The cheek-teeth of the genera muler consideration exhithit, in the first developed parts of their slaft, more or less evident traces of the ancestral pattern; mostly so the deciduons teeth, which are east off when the primitive pattern has almost vanished, and without showing a beginning of transformation; least so the true molars, whien in the first stages olservable of the calcifiel tooth, and before trituration has set in, show the primitire pattern already reduced and the secoudary in process of erolution.

\section*{Lower Molafs of Lagomorpious Rodextia.}

To state it in a gencral way, the lower molars of the Lagomoppha present the same characters as their upper antagonists: viz. anteriorly in the series we meet with complication, posteriorly with a simple thanserese pattern. On closer examination, however, it may he seen that in the mandibular teeth the process which we have followed through its various stages in the upper set is accelerated. Although it must be taken into accoment that we hare one premolar less below them above, none the less-leaving for the present out of consideration the reduction which takes place at the posterior end (m. 3)-there is in the adult mandible only one tooth, the anterior, which differs materially from the others, hy being more complicated. In Titcommys, the oldest member of the group, this tooth (p. Q) as genemally described and figured, piosents a more simple structure than in later genera, and aren than do the other teeth of Titunomys, be being composed of only one column, divided into two lobes by an inner and an outer cmamelinflection: whereas in the teeth situated pusteriorly there are two columns, the division between them being complete: they are held together by cement.

We meet here with a plenomenon which is pretty general among Rodents. whether the mmber of their cheek-teeth be three, four, fire, or six. To state it more fully:-
1. The mandibular eheek-teeth precede those of the maxilla in the reduction of their

2. Yery frequently the anterior tooth in the lower series, whether it lee p. 2, or p. 1, or m. l, is more complicated than those lehind; which circmanstance sugsests that the complication has some connection with the anterior position of the tooth in questiom.
:3. When the anterior lower touth is nearly or actually equal in pattern to those behind, this is generally so in older forms. Thus we find that in W'inge's Anomalurdarinchuding mostly Tertiary genera-prorided with four lower terth, the anterior one (p. 1) is equal or subequal in size and pattern with the others, and sometimes even of smaller size. Again, in Muride, with there inferior cheek-teeth, the geologically older forms have the anterior one ( m .1 ) equal or subequal in size with the two following, wherems the complication of the first molar appears only in more recent forms. The same is true with regard to the lagomorphons Rodentia, where the anterior tooth is p. 2, and in the ollest known genera (Titanomys, P'elcolagns) of a rather simple pattern.

The explanation which I suggest for these curious occurrences is as follows :-When an anterior tooth drops out from the mandible-gencrally through an apparent interference of the incisor with its pulp--some compensation for its loss is necessary, as the correspouding maxillary tooth is generally still in its place; this compensation is brought abont by a complication on the anterior side of the tooth which has become the first in the series by the loss of the originally anterior oue. Those genera which are nearer in date to the epoch when the anterior tooth was lost will still present a less complicated form of that which has succeeded to this position, while in the later genera the foremost tooth will have aequired the complication. When p. 2 is dropped, p. 1 witl become the foremost tooth, and the same cycle will recommence, and so on.

I next procced to a closer examination of the lower cheek-teeth, starting from those of Titanomys. A superficial comparison of the anterior tooth, p. 2, of this gems, with that of the other Lagomyide, shows that in the former it is more simple than in the latter, and presents an approximately tetragonal ontline at its triturating surface; in Prolagus, Lagopsis, and Lagomys this is triangular (apex in front). Thus it is that we find the tooth geverally deseribed; but on cluser, examination the matter is somewhat more complex. I have figured five specimens of \(1 \cdot 2\) of Titenomys Fontomesi, from La Grive-Saint-Allan, in different stages of wear; four are isolated teeth (Pl. 3\%. figs. 1-4) ; the fifth is in its place in a left ramus, presenting the complete series of two premolars and three molars (Pl. 37. fig. 7). Of 'T. visenoriensis I have one specimen, in a fragment of the right ramus, contaming the two premolars (Pl. 3\%. tig. 25). This species is from the Allier (Brarard Collection, Br. Mus. Geol. Dep. No. 31095). The first stage in T? Fontannesi (tig. 1) represents a tooth which has not yet come into wear. In the main it is composed of two lobes; the anterior is subeonical, the posterior is much more extended transversely, and composed of a tapering outer and a thicker, romided imer ensp; moreover, on the middle of its posterior surface appears a smalf cusp \((t)\); the anterior surface of this lobe is wimkled. Even in this early stage the separation of the two lobes is incomplete; a ridge, running almost longitudinally backward, from the middle of the posterior side of the anterior lobe towards the posterior, shows that trituration would very soon have comected the two by a narow isthmus of dentise, thus separating from each other an outer and an imer enamel-inflection. This we see, in fact, brought about in the second stage (fig. 2). Towards the middle of the anterior margin of the anterior lobe, a feelble cusp is visible in the first stage ( 1 , fig. 1 ) ; the same is more distinct in the second stage ( 1 , figr. 2), "1here it is nearer to the imer side. This cusp, to all appearance, is Winge's 1, Ostorm's paraconid. Whether it contains potentially some other element I must leave undecided; as a matter of fact, in the two teeth descriled, it does not occupy exactly the same position; and in T. risenociensis ( 1 , fig. 25 ) it is more approximated to the outer side. What is called the paraconid is, howerer, somewhat inconstant in its position*. In p. 2 of T. rise-
** Sec, ce.!, the text-figures in IV. D. Mathew, "A Perision of the I'ucrco Fama," Bull. Im. Mus. Nat. Hist. is. (1-9す).
noriensis (fig. 25) it is evident as a small vertical pillar, lying far below the triturating surface of the moderately worn tooth.

To return to the second stage in Titanomys Fontamesi. The imner of the two principal enamel-inflections resembles somewhat in outline its homologne in Lugopsis repus (Pl. 37. fig. 26, p. 2). It is scen to be composed of two parts : a posterior, which commmicates by a narrowed opening with the internal margin of the tooth, and thence roms straight towards the middle of the tooth, and an anterior circular one; the two commmicating with each other by a narrow channel. The terminal cusp \((t)\) is situated much nearer the inner side than in the first stage. I have dealt with this terminal cusp of the lagomorphous Rodentia on a former oceasion, and homologized it with Osborn's hypocomulid *; a view from which I see no reason to depart. In the third stage (fig. 3) this hypoconulid is still apparent ; lut the "paraconid" has disappeared, and so has the circular part of the imner enamel-inflection. The transserse posterior part of the latter is on its way to be shat off from the inner margin, and to assume the form of a circular chamel istet. " \(t\) " is visille on the posterior interal edge of the tooth. In the fourth stage (p. 2 of fig. 7 ), the circular enamel islet is quite separated from the inner margin, and has become confluent with the outer enamelinflection, so that the triturating surface of the tooth presents--if we except a small chamel fold limiting anteriorly the still extant \(t\)-only one enamel-inflection, penetrating from the middle of the outer margin and approaching the inner. In the fifth stage (fig. 4.) we find only the latter inflection, \(t\) also having disappeared. This tooth in its general outline again approaches the first stage.

No lower deciduous teeth of Titanomys are at my disposal. Filhol has figured \(\bar{d}_{1}\) and \(\bar{d}_{2}\) of \(T\). cisenoriensis from Saint-Gérand-le-Puy (Allier) ; from this figne nothing more can he made out than that in d. - the anterior part seems to he more produced anteriorly than in p. 2. No description is given of the triturating surface 中.

The anterior lower premolar of \(T\). vispnoviensis is distinguished from the same tooth in T. Fontrmensi by the persistence of the enamel-inflection of the imner side in the adult (Pl.37. fig. 25) ; in the immature specimen figured by Gerrais, and originally described as a separate sjecies, T. tritobns, the two conamel-folds are contluent in the middle of the triturating surface, thus completely separating an anterior and a posterior lobe \(\$\). The terminal cusp \((t)\) present in the specimen figured (Pl. 3\% fig. 25) must certainly be expeeted to be risible likewise in rounger specimens; Gervais makes no mention of it in this tooth; in the profile view of the tooth, however §, there are two vertical groores on the inner sitle. A small anterior pillar ("paraconid") on the anterior side (1.), below the triturating surface, has already been mentioned as present in the British Muspum specimen.

\footnotetext{
* Proc. Zool. Soc. Lnnaoii, is \(9: 3\), 1. 203.
+ H. Filhol, "Études des Mammif. foss. de Saint-Gérand-le-Pny, Allier," Ann. Se. Géol. x. 1. 29, pl. iii. fig. :3 (1579).
\(\ddagger\) Zool. et Pal. Fr. 1r. 51 : " les deux Jobes de la première [molaire] n'y sont point eneore rén nis l’un à lautre par un petit istlme d"ivaire ": 11. 46, fig. 1 (165!)).
§ Ot, cit. 1l. 4f, tiz. 1 c.
}

We have to follow up this same tooth, p.at in the other genera of Lagomyide. In Lagopsis remps (Pl. 37. fig. -6 ), from the Middle Miocene of Lat Grive-Saint-Alban, the posterior transverse lobe of p. 2 is momided, with no trace of \(t\). The next anterior lobe is separated from the former by a T-shaped enamel-inflection on the inner side-which las already been mentioned as approaching in form its homologue in Titemomys Foutunesi (fig. 2)--and ly an onter one. We have, therefore, bere the two enamelinflections of T. visenoriensis and of the young of I'. Fontannesi. Howercr, in Layopsis the lobe is more distinctly divided than even in fig. 2 ( \(T\). Fontemmesi), into an outer and in imer cusp; for in the former the T-shaped inflection extends more anteriorly, and the lobe is delimited in front by two smaller chamel-folds. These latter delimit on their anterior side two further cusps, an onter and an imer; the latter corresponds to 1 (paraconid), as seen by comparison with fig. 2 ; the former may correspond to the pillar which in T. risenoriensis (fig. 25) is nearer the onter than the inner side. In any case, in Lagopsis the anterior part of p. \(\stackrel{\rightharpoonup}{ }\) is much more developed than in Titenomys; lor we hase, in the former, two comparatively stout eusps against one feeble curp, in each of the two species of the latter. Besides, there is in Layopsie a small odd cuspidule, situated in frost of the anterior pair, and in the middle line of the tooth, to which it wives a triangular form.

The principal diflerence in Layomys, to which Layopsis is nearly related, consists in the fact that the characteristic \(\mathbf{T}\)-shaped intlection of the Layopsis p. 2 is either absent on replaced by a slight indentation of enamel. The latter is the case, e.g., in Lagomys retilus*, the former in L. "lpinets and L. nepulensis t. Moreorer, the odd anterior cuspidnte las vanished in Luyomy/s.

In Prolughes also the anterior part of \(\mathrm{d} .: 2\) is much more compticated than in \(\mathrm{p} . \dot{z}\) of Tiltenomy.. Fig. 5, Il. 37 , shows this tooth of Prolughes sarders, war. corsircentes, from the ossiferous breceia of Toga, near Bastial (Br'. Mas. Geol. Dep. No. Al: bs6); tig. G, the same touth of the Miocene Prolagus aningensis from La Girive-Saint-Alban; buth fiom the left side. I have still younger stages than those fignred of this deciduous molar, showing the posterior lobe completely separated from the middle one. The anterior lube of d. 2 of \(P\). aningensis (fig. (6) is tripartite, as in Latyopsis, but the odd anterior enspidule is less distinctly divided from the imner than in the latter genus. In the twoth of \(P^{P}\). ariningensis the whole tripartite lobe is connected only by cement with the rest of the tooth; in younger stages it is still more divided into a smaller. external cusp-which is isolated, also, in the d. .2 of \(P\). satorlus tigured (fig. 5)--and a lamer internal one comprising buth the "paraconid," 1 , and the odd anterion cuspidule. The isolated small external eusp of \(l\) '. surdus is sitnated far below the tritmrating surface; the inner larger one, showing no separated odd cuspidule, is comected on its imner side with the rest of the tooth, as happens likewise, though very rurely, in the corresponding permanent tooth, p. 2 , of the same genus. In still more advanced stages

\footnotetext{
* For a figured specimen of this tooth see E. Schaff, "Ueber Letyomys ruilus, Sevortzoff," Sep--Abdr. aus Zoul. Jahir) ii. p. i:! , fig. itb.
 (18.0)
}
of wear of the deciduons tooth of Prolagus, the whole of the anterior tripartite tobe appears invariably connected with the posterior part of the tooth hy a dentinal isthmus, thus giving the whole tooth some resemblance to m .1 inf. of a role; and it has, in fact, been mistaken for a molar of Ificrotus.

A characteristic feature of the anterior lower premolar, \(\overline{\text { p. }} \boldsymbol{2}\), of Prolages, is an odd isolated eusp or pillar, commected only by cement with the rest of the tooth, and situated on its anterior side, thus giving to the whole tooth a triangular outline, as in Lagopsis. In Prolergns amingensis (Pl. 37. fig. 9) this cusp is sitnated near or close to the middle line; in \(P\). surdns *, of which I have examined hundreds of specimens, its position is nearer the immer side. As before mentioned, in very rare cases of \(P\). sardus, this usually isolated cusp is united with the tooth wear the imner side, as in d. 2 of tig. 5. In other cases of \(I^{\prime}\). cenengensis (fig. 12, Pl. 37.) and \(P^{\prime}\). surdus, it may he united with the tooth near its outer side. This latter fusion 1 found to have taken place in 1!) specimens of p. \(\bar{z}\) out of 575 examined, from the ossiferous breceia of Monte San Gioramui (Sardinia) ( \(P\). sunders), and in two cases ont of sh examined from Toga, near Bastia ( \(P\). sardus, rar: corsicanus). The cusp was united with the tooth near the inner side in two of the 5 as exmples from Monte San Giovami. Cusp " \(t\) " [ have met with only in p. 2t P'rolugns ctscences (page 160).

A comparison with the specimens before describel shows the usnally odd isolated cusp to be the homologue of the "paraconid" combined with the anterion odd cuspidule of Layopsis, white the onter cusp of the tripartite anterior lobe is present, also, in p. 2 ; in P. amingensis it is generally stouter than the onter cusp (6) of the median lobe, whereas in \(P\). surdus the inverse is the rule. In exceptional catses of \(P^{\prime}\). serdus 1 find this outer ensp of the anterior lobe completely isolated, as it is in the deciduous tooth of tig. 5.

A second characteristic featme of the p.a of Prolugus (figs. 9, 12) is a longitudinal enamel-fold, filled with cement, which, begimniag from behind the isolated anterior cusp, proceeds backward to near the hinder margin of the tooth, thus completely dividing the middle lobe into an outer and an inner cusp, and incompletely so the posterior one, ou which it also encroaches. The longitudinal irrangement of the elements of this p. 2 of Prolagns, in opposition to the transverse armagement of the posterior teeth, is very striking.

I now proceed to a consideration of the same tooth in the Leporide. With reference to p. 2 of Pelcoluyns, Leidy slates:-"The interior four inferior molars [of Petceoluyns" besr a near resemblance in form and constitution with the corresponding serics of Thtenomys. cisenociensis, as represented in pl. L6 of Gervais' Zool. et Pal. Fr." \(\dagger\). Comparing it with the same tooth in Lepus, Leidy further says in the original description of Puleco-lagus:-"The first inferior molar is bilobed, and not trilubed as in the latter (Lepus)" \(\ddagger\). In his second memoir the first inferior molar of Paluolugus is said to be composed of a double column as in the others, the same tooth in the Hare of a triple columus. Cope

\footnotetext{
* I. Hensel, l. c. pl. xvi, fig. ४.

\(\ddagger\) Proc. Ac. Philad. p. S' (1-.06).
§ Extinct Hamm. Funna, \&e., p. 331 .
}
supplements this description by the following information based upon a great number of remains:--" I am able to show that it is only in the immature state of the first molar that it exhibits a double column, and that in the fully adult animal it consists of a single column with a groove on its external face "*. A more complete description is given on p. 878 :-"There is the merest trace of a posterior lobe "-correspondings to the terminal lobee \((t)\) of Titanomys-"at this time, and that speedily disappears. The anterior lobe is subconical, and is entirely surpounded with enamel. By attrition, the two lobes are speedily joined by au isthmus, and for a time the tooth presents an 8 -shaped section, which was supposed to be characteristic of the genus. Further protrusion brings to the surfaen the bottom of the groove of the inner side of the shaft, so that its section remains in adult age somethings like a B." From this deseription it appears that p. \(\because\) of Pelcolugus Haydeni is almost exactly like the same tooth in Titanomys Fontannesi.

The difference between the p. 2 of Palcolugus and Lopus is stated by Cope to be as follows:-In the extinet genus the first tooth "consists of one column more or less divided. In Lepms this tooth consists of two colmms, the anterior of which is grooved again on the extermal side in the knewn species." Leidy's deseription of the Leporine \(\overline{\mathrm{p} .} 2\), as being composed of three lohes or columens, is more acenrate. It is quite true that in the adult p . 2 of many Leporidx appen's to le composed of two columns, with an additional antero-external enamel-inflection (see Pl. 37. figs. 13 \& 19) ; but by no means universally so, and, so far as my experience goes, it is nerer so in the young (Pl. 37. Higs. 8, 18, 22, 23).

In the immature p . 2 of Lepus s.l. (Pl. 37 . fims. 8,22 ), as well as in the immature stage of all the other inferior molars of the same, the posterior and the middle-lobe column are completely divided; only in later stages a very narrow isthmos of dentine connects them on the inner side (Pl. 37. figs. 13, 20, 23). The fact of a primeny separation into two lobes of the inferior molars of Lepus was first annomerd by Higendorf \(\$\).

The unworn lower p. 2 of the Wild Rabbit (Pl. 37 . fig. 8) displays anteriorly the anterior of the three columns eompletely divided into a smaller outer and a larger imer subconical cusp; this division is brought about by a longitudinal enamel-inflection, which invades part of the middle lobe as well, so that the latter is also divided, though incompletely, into an outer and an inner cusp. (Compare the homologons enamelinflection of Prolugus, tig. 9.)

Passing on to the lower cheek-teeth hackward from p. 2, the rarious stages which I have represented in Pl .37 show in the lower molars the simple transverse pattern of the two lobes of \(\mathrm{p} .1 ; \mathrm{m} .2\) is a secondary one, as in the upper tecth, though in the inferior molars the original pattern is much more ephemeral, least so in p. l, which forms a transition between p. 2 and the true molars.

\footnotetext{

\(\ddagger\) "Besteben die unteren Backzaihne anfangs aus zwei getremiten Schmelzhamellen, Welche erst spinter mit cinander vewachen, so dass ein wesentlicher Cuterschicd zwischen zusammengesctzten und selimelzfaltigen Zaihnen der hasematigen Thicre nicht gumachen ist." Monathler. d. K. preuss. Akad. d. Wjes, an Berlin. Sitzg. r. 14. Dec. 1E65, 1). (673 (1866).
}

These tecth, as a whole, exhibit in younger stages a greater longitudinal diameter than in the adnlt; this is notably the ease in Titmomys (Hl. 37. figs. 7, 10, 24), and is chietly due to the greater development and independence of the terminal cusp \((t)\).

The youngest mandible of Titunomiss which I possess is a left ramus of T. Fontennesi (Br. Mus. Geol. Dep. Mig27 b), figured Pl. 37. fis. 10. P. 2 and m . 3 have dropped out. Flanking the three corners of the alveolus for p. 2 are visible the small alveoli for the roots of deeiduons teeth; the anterior and the postero-external seem to belong to \(d .2\); the postero-internal was presumably oceupied by the anterior root of d. 1. P. 1 is still in the socket and had not yet come into use. Both the principal lobes composing this tooth are surrounded by enamel ; but the wrinkled ceatral surfaces of the lobes are composed of dentine, with the exception, perhaps, of the summits of some of the wrinkles, which, to judge from their shining appearance, may hear a very slight coating of enamel *. In p. I and the true molars of culult Titunomys Fontannesi, the enamel bordering appears interrupted in the middle of the anterior margin (Pl. 39. fig. 6 ( 1 ). Higendorf has recorded a similar instance of the absence of the enamel bordering on the imner half of the anterior border in the lower check-tecth, p. 2 excepted, of Lepus 中. The anterior transverse lohe of p. 1 (fig. 10) still shows traces of having been divided originally into an onter and an inner cusp and of the "paraconid" on its anterior border; vestiges of the latter are visible also on p. I of a slightly older individual (fig. 16, of the right side), and on m .2 of the same right ramus. The terminal cusp t ("hypoeomulid") is present in both p. 1 and m. 1 of the rounger specimen (fig. 10), as well as in \(1.1, \mathrm{~m} .1\), and m .2 of the sccond individual (fig. 16), and in p. 1 of a third (fig. 21 , right side). In the left ramus, exhiliting the complete series of five check-teeth (fic, 7 ), \(t\) is present in all of them. In p. 1 of T. visenoviensis (fig. 25 ) it is remarkably large, although partly fused with the posterior lobe; and it is equally present on the posterior border of m .1 and m .2 of the second specimen of T. cisenociensis (fig. 2 L ) ; so that, eontrary to what has heen stated loy former writers, the cuspidule in question may be present in all the four anterior cheek-teeth of this specics.
lassing on to the recent representatives of the family, it may be seen trom fig. 2.2 (Pl. 37.), of an immature Cuproluyns hispides, that p. 1 nearly approaches p. 2 in its anterior complication. The tro prineipal lobes are not yet connected on the inner side by a dentinal isthmns, but are merely held together by cement; the anterior lohe is distinctly eomposed of an outer and an imer eusp, the latter being more pointed and slightly higher than the former. The anterior border of the tooth presents two minor cnsps, an outer and an imer, the median odd cusp of p. 2 being absent. Both the lobes show a very marked wrinking of their surface. As in p. \(\because, t\) is apparent on the posterior margin of the second lobe.

Two very distinet minor cusps are likewise risible on the anterior border of p. I of the

\footnotetext{
* We have here an instauce similar to that recorded by Hensel in Ines decmennes, mettus, musculus, syluaticus, agrotius, and minutus, where in perfectly uwworn molars "uberzieht der schmetz die Hocker der Zahnkrone uiemals vollstandig, sondern lisst an den spitzen das Zahnbein frei hervortreten." Zeitschr. d. deutsch. geol. (ies, viii. p1. \(25: 3,254\), 1l. xiii. figs. 2,3 (1854j).)

ث Sitzungsuer. Ges. uaturf. Freunde zu Berlin, 14 Jan. 1854 , p. 23.
}

Rablit (fig. 8): the first lohe of the same is mainly eomposed of an outer and an inner cusp, separated by a median hollow; the second lobe is wrinkled as in p. 2 of the same species. The minor cusps, though less distinct, are visible also in m .1 and m .2 of the Ratbit, in m. 2 almost vanishing. I have noted their presence in the trine molars of young specimens of other species as well (Lepus curopous, Lepus sp. from China, Syltrilagus brusitiensis) : \(t\) is generally present in unworn deeidnons teeth, in premolars, and in molars of sereral leporide.

To sum up the aloove as regards the lower cherk-teeth, p. 2--m. 2. An original arrangement into outer and imner ensps, separated ly a median longitudinal ralley, is, tracealle in the lower molars of Lagomorphat gencrally. It is more distinet in the anterior cheek-teeth, and persists throughout life in p. 2 of most genera in both families; it is less distinct, though perfectly perceptible, in trne molars, in which it very soon disappears hy wear, being replaced by the transrerse arrangement. In p. 2 we have to distinguish between an older complieation and seeondary additions; the inereaso in the plication alone is present in the posterior cheresteeth, the anterior cusp not. On comparing adult stages of p. 2 of Titanomys with the corresponding tooth of all other lagomorpha which, on the whole, are more reent forms, the latter appear to be more complicated; but in young stages p. 2 of Titunomys. Fontannesi presents also a complieated appearance. This camot be an incipiont complication, for that part of the shaft of the tooth which is situated on the opposite cud of the pulp-carity is, as a matter of course, always the oldest. llitgendorf has found the interruption of the mamel loorder on the imner side also of lower molars of hepms *, a faet which points towards a degeneration of this part of the tootl, and would seem to call for a compensatory increase on its outer side. Howerne. I am not aware of a pereeptible additional inerease on the outer side of lower molars of more recent forms, as eompared with older ones \(\dagger\).

Tpper molars are more progressive than lower as coneerning oceasional additions. An ingenious explaration of this general ocenrence is given lowinge in the following remark:-"The explanation of the maxillary toeth making al larger increase than those of the lower jaw is in all likelihood the following: they are placed in an umorable bome, where the conditions for nomishment are more farouralle than in the comparatirely slender and morable mandible" \(\$\). In our special ease an increase of the lower molars in the tramserse direction can he the more dispensed with, sinee in the Leporidae the morement of the jaws is chiefly lateral. This will not be demicd by any one who has ever examined the slape of their glenoid cavity or watched a Ratbit or Hare chewing. Moreover, the dentine of hoth upper and lower eheck-teeth shows mmistakable signs of this morement, in the presence of transwerse striar, due to the action of the transrerse enamel crest of the opposite tooth.

It remains to disenss in some detail the last molar, m. 3 , alout which rery divergent views have been put forward.

\footnotetext{
* Op. cit. p. 23.
\(\dagger\) Neither am I aware of lacuna on the interant mand Fondering of any Lagomyidx; but \(I\) must add that no sections tere made.

}

Fig. 7, Pl. 37, shows this tooth in place in a Jeft mandibular ramus of Titenomys Fontunnesi. It is not a simple cylinder, as in Lagopsis and Lagomys, but is composed of two lobes, a larger anterior one and a small posterior, attached to the former in the same manner as in the anterior molurs the terminal cnsp \((t)\) is attached to the lobe preceding it, viz. separated from it by cement, only in the upper part. For this reason, and becanse the anterior lobe of m .3 shows traces of greater complication, I homologize the posterior lobe of this tooth with \(t\) of the anterior molars; the anterior lobe of m .3 would then represent both the principal lobes of the anterior molars.

When discussing the tooth-formula of Titenomys, allusion was made to Filhol's suggestion that the terminal cusp of \(m\). 2 of \(T\). visenociensis might be the representative of m .3 of the recent Lagomys, in the specimens of the former where this is missing. "Si cette opinion est juste, on pourrait en tirer comme conclusion qu'à un certain moment, sur les animatux roisins des Layomys, il y a une tendance à la simplification du système dentaire, d'abord par la fusion de la derniere dent avec l'avant-dernière, et ensuite par la tendance à la disparition de cet dément soude" ". Filhol here ignores the circomstance that all the anterior teeth have this "troisiome lobe "as well, while in their case we have not at our disposal an occasional small isolated tooth to suggest a fusion theory. Besides, as was said before, this theory may be at once disposed of ly a glance at our fig. 7 , showing m. 2 with a rell-dereloped terminal cusp \((t), \mathrm{m} .3\), the supposed homologue of this latter, being libewise present. Other figures also (figs. 10, 16) show m. 2. with the terminal cusp, together with the atveolus of m .3 .

As will be seen further on, Schlosser seems to incline to the opinion that the presence of a terminal cusp in m. of Tisenocionsis is an indication of mating become fused to \(\overline{\mathrm{m.} .2}\); for he says that \(\overline{\mathrm{m} .3} 3\) of Letyopsis verus may be the analogue of the terminal cusp ( \(t\) ) in m. 2 of Titunomys \(\dagger\). It is, howerer, difficult to make out what meaning he wishes to attach to this ragne term " Analogon ".

Lagopsis.-The type-specimen. Hensel's Lagomys cerns \(\ddagger\), has five lower cheek-tecth, the last being a small cylindriform tooth, precisely as in the recent Layomys, to which Lagopsis is closely related. The tooth in question was nut complete in Hensel's specimen, but a fragment seems to have remained inside the alveolus; else he would have presumably used the term "ausgefallen," whereas lie says, speaking of the condition of this tooth, that it is broken away ("weggebrochen ").

Three more or less complete mandibular rami, from Deugenhansen, Elgg, and Hohenhören respectively, are mentioned by II. v. Meyer, and drawings of their teeth, found among II. r. Meyer's MLSS. have been reproduced by Schlosser §. They show an agreement in their p. \(\overline{2}\) with Hensel's Lugomys cerus, and Schlosser therefore concludes \(\|\), rightly, I think, that they are of the same species. He further deems it not improbable of that Lagomys coningensis, \#. r. Mey., from Eningen may be identical with Lagomys
```

* Ann. Sc. Geol. x. p. EN (18,9).
\dagger 'Nager des emrop. Tertiars, p, 30 (1.88t).
\ddagger Zeitschr. d. deutsch. geol. (iec. 1550, zr. 6ss, pl. xri.

```
§ Op, cit. p. :31, pl. ciii. figs. 40, 41, 49.
Y Op. cit. 11. 31, 32.
- Op cit. 1. 32. tigs. 12, 13 .
serus, Mens." That this is true with regard to the Tuingen specimen in the British Museum has been shown on p. 462 . I can affirm the same for the Seyfried specimen * at present in the Constance Gymnasinm, where I examined it and found it to have the characteristic p. \(\overline{2}\) of Lagopsis verus. With regard to the Carlsruhe specimen \(\dagger\), since the shape of its \(\overline{\text { p. } 2}\) cannot be elearly made out from II. r. Meyer's figures and deseription, the true position of this "L. ceningensis, II. r. Mey.," cannot be satisfactorily determined for the present. It might quite as well be a Titanomys Fontemesi. In the former, as well as in the specimens from Deggenhausen, Elgg, and Hohenhören, no last molar (m. 3) could be seen ; as, however, this tooth is rery caducous, its alsence in the fossils is not in the least conclusive; it may have dropped out and the alveohs been filled with matrix. Nor does Schlosser attach any great weight to the absence of this small tooth in the three specimens drawn in ח. r. Meyer's MSS.; this, howerer, for reasons with which I completely disagree. "Auf das Fehlen des letzten einfachen Backzahnes hei den drei von H. v. Meyer gezeichneten Exemplaren darf wohl nieht allzuviel Gewicht gelegt werden. Es ist nicht ummöglieh, dass auch hier, wie bei Titunomys visenociensis, im normalen Kiefer nur 3 zweilobige Molaren vorhanden sind, und dass daher der stiftförmige m. 4" (meaning m. 3) "des Ifensel'schen Originales als Analogon des bei \(T\). visenotiensis alnorm ronkommenden Lolms des m. 3" (meaning m. 2) "hetrachet werden muss." \(\ddagger\)

This whole statement is somewhat ragne; the anthor seems to assume (1) that in I. risenoriensis both the m. 3 and the third lobe ( \(t\) in my figures) of m. \(\overline{\text { an }}\) oceur only abnormally ; (2) that in "Lagomys cems" the presence of m . 3 is equally an abnormal oceurrence. From these two assumptions the inference is drawn that m. \(: 3\) in the type of Lagomys rems is the analogue of the equally almormal third lobe in m .2 of T. cisenociensis. Sehlosser concludes by saying that he is almost inelined to consider the presence of \(\overline{\mathrm{m} .3}\) as a jurenile chameter, and that this tooth is carlueons (hinfillig). This is very probably true with regard to T. risenoriensis, and I have myself suggested it in the preceding pages. But it is decidedly erroncous with regard to m. \(\overline{3}\) of Lagopsis revus, as are all the other suggestions tentatively put forward in the passage quoted. With regard to I' risenociensis, the matter has been fully discussed above. As to the m. 3 of Lagopsis rerus, in all my specimens from La Grire-Saint-Alban, either the tooth itself or its very distinct alreolns is present (Pl. 3\%. figs. 11, \(2(\) ( ) . Deperet, too, has before figured a mandibular ramms of Lagopsis cerus from the same locality, showing the m .3 §; and Biedermam has described this same tooth in specimens from Elgg.

Prolagus.-There is no third inferior true molar, m. 3, in this genus; m. \(\overline{\text { a }}\) is composed of three lobes, the posterior connected with the middle one by cement, in the same way as the latter is with the anterior one. From this circumstance Pomel concludedust as Filhol has in the case of Titunomys - that in Prolagus m. 3 had hecome fused with m. 2 . Of the Prolugus oeningeusis of Sansan, he says:-"Cenx de Sansin different

\footnotetext{
* II. r. Meyer, "Fossile Stiugethiere, ete., ron (Eningen." Fanaa d. Vormelt, p. fi, pl. iii. fig. 1 (1845).
\(\dagger\) Ib. pl. ii. fig. I.
\(\pm 0_{1}\), cit. p. 32 .
§ Areh. Mus. Lyon, iv. p. 16t, pl. xiii. fiys. 16, 16 e (1597).
}
encore, comme sons-genre, par la dernière molaire inféricure, qui a trois prismes par rémion de la cinquieme molaire ì la quatrième" *. Fras holds the same opinion \(\dagger\).

This theory would at first sight seem to be supported by what Depéret has found in the Prolugus of Roussillon. He figrues two mandibutar rami 中, in one § of which he records five chcek-teeth, in the other \| only four ; and he groes on to say :"Cette différence est moins importante qu'elle ne peut sembler aut premier abord; elle tient simplement à ce que le dernier prisme d'émail de la série dentaire est soudé au prisme précédent de la quatrième molaire dans l'me de ces mandibules, tandis que ce même prisme libre constitue une cinquieme molaire dans la fig. 29. Cette sondure, qui se fait d'ailleurs uniquement par l'intermédiaire d'une certaine quantité de cément, ne me parait pas aveir l'importance qu'on lui a attribuce ponr la distinction des deux genres Lagomys et Prolagns, prisqu'elle est variable suivant les sujets dans le petit Léporidé de Roussillon " ब.

I agree with Prof. Depéret that this difference has no great importance in the Roussillon jaws, though not for the reasons adduced, for I apprehend he is mistaken when he institutes comparisons with Lagomys, and considers that the isolated prism of his fig. 29 "constitue une cinquieme molaire." H. v. Meyer met with similar oceurrences among twenty mandihular rami of Prolugus oeningensis. (Kün.) from Steinheim, and refers to them in the following words:-"In some instanees one might be induced to believe that the postcrior of the three prisms constitnting the last molar is separated, so that the creature would have the character of Lagomys"; but he judiciously adds:-" On closer examination, howerer, it can be seen that the posterior prism is included in the alreolus of the rest of the tooth, so that it cridently is part of the latter " ("dass das hinterste Prismil nieht dureh die Alveole ron dem übrigen Zahn abgeschlossen ist, zu dem es daher offenbar noch gehört)" *** Numerous mandibular rami of the Prolages aeningensis from La Grive have passed through my hands, as well as from 600 to 700 of \(P\). sardus from the Corsican and Sardimian ossiferous breccias and cares. Not unfrequently 1 form the third prism of \(m\).is scparated from the rest of the tooth; but by the criterion established by H. v. Meyer there conld nerer be a doubt as to the interpretation, which invariably was that, either by fracture or by the wathered condition of the cement, the last prism had been separated from \(\overline{\mathrm{m} .2}\); as are likewise, though more rarely, separated from each other the two prisms of the anterior teeth. I do not doult for a moment that the same explanation will hold grood in the case of the Roussillon specimens. In Prolagus each of the prisms has its alreolar biche formed by two partial septa starting from the outer and inner alreolar border; but these must not be confused with the complete septum separating one alveohs from the other.

I consider the third prism of m. 2 of Prolarges to be the homologue of \(t\) of the

\footnotetext{
* Cat. méth. et descr. Vert. foss. du Bassin de la Loire et de l'illier, p. 43 (1853).
t W'urttemb. naturw. Jahresh. xxvi. p. 170 (1570).
\(\ddagger\) " Anim. plioc. du lioussillon," Mém. Noc. ( féol. France, i. p. 5̄̆, pl. iv. (1890).
§ Op, cit. \({ }^{\mathrm{l}}\). ir. figs. 29, 29 u.

}

Titanomys-tecth ; and that m. 3 haring been lost in the former gemus by some means or other, the terminal cusp of \(m .2\) has become enlarged in compensation. We have numerous analogies for similar occurrences, but we have none for the ever-recurring theories of fusion hetween tooth aud tooth, which on closer examination always break down. This notwithstanding, we shall still hear of them, since they yield the explanation which lies nearest at hand.

Again, althongh Prolargus presents in its molars, at least in the upper ones, more primitive eharacters than Lagopsis and Lagomys, it eannot be considered to be the direct ancestor of these; for it cannot be surmised that a tooth-im. 3-after having been lost, reappears in a later genus. Hilgendorf regards m. 3 of Lepus as a recent acquisition, for he terms it "phylogenetisch der jüngste (Zahm)" *; presumably for the same reason for which he considers the maximnm of enamel-plication olserved by him in upper incisors (of "Lepus mexicamus") to he "phylogenetisch cin Extrem" \(\dagger\), becanse there is no trace of it "hei den lossilen Leporiden-Gattungen (Myolugus)." There is no good reason for considering the Miocene Prolagus (Myolayns) in the ancestral line of Lepms, simply becanse no true Leporida have heen found in the European Miocene; nor in inferring from the various primitive chameters of Prolayus that the absence of m. 3 is a primitive character as well. Besides, Hilgendorf does not take into consideration the fact that Lergopsis and Titenomys, hoth of which are contemporaneous with and even partly (T. visenovionsis) older than Prolagus, possess a \(\overline{\mathrm{m} .3}\). I presume that, for similar reasous, Hilgendorf would consider the m. 3 of Lepus a recent aequisition also; and here we must remember that the Oligocene Palcolayns has both m. 3 and \(\overline{\mathrm{m} .3}\).

Noack describes the last lower molar of youmg Lepus sazulitis as composed of two antero-posteriorly placed cusps, which seem ("scheinlar") to be separate, but at any rate ("jedenfalls") are only loosely connected, which makes it donbtful whether they ever coalesee to form a compact tooth. This conformation of \(m, 3\) is in the anthor's opinion a sufficient justification for the following generalization: "Jedenfalls ist im Unterkiefer ron L. staxalilis noch die Tendenz zu 6 Backemzähnen vorhanden." \(\ddagger\) Why not, while we are at it, towards eight? --since it is stated immediately afterwards that the same partitioning of the two lobes is also visible in two of the anterior molars. The
: Sitzungsber. d. Ges. naturf. Freundo Berlin, Sitzung v. 15. Januar 18:4, 1. 23.
† Op. cit. p. \(\because 0\).
\(\ddagger\) Th. Noack, "Noue Beitrige zur Kenutniss d. Aitugethier-Fiuna von Ostafrika," Zool. Jahrb. Abth. f. Syst. ote. vii. p. 545 (1893). The whiter of this pamphlet has examinod numerous dentitious of fretal and joung Rabbits, and "L. culyaris" (meaning \(L\). curoperes), and finds among other things in their cheek-teeth eusps which are absent in the adult. So far, good. Apart from this, his descriptions and generalizations show on almost every line that he has approached this difficult subject withont sufficient seientific training. Hilgendorf's short sentence of 1865: "Die oberen Backzähne junger Hasen sind mit ciner halbmondformigen Schmelzrühre versehen, wodurch ein Ühergang zu dem fossilen Myoletgus gelibldet wird,"-is of infinitely higher seientifie value than the rages filled with laborious descriptions in the paper quoter. If the author had taken Hilgendurf's words as a tarting-point and a guide in the investigation of upper leporine cheels-teeth, he might have been able to lo some useful work. He knows about tritubereular teeth; he also seems to be aware that on one oceasion tho molars of lagomorphons Rodents have been compared with those of diprotodont Marsupials, and that
numerous juvenile dentitions which were at the author's disposal might have shown him that the separation of the two lobes is characteristic of young stages in the inferior cheek-teeth of Lepus generally.

\section*{Tife Bony Palate in the Ligomorphine Skull.}

The greatly reduced bouy palate is considered to be one of the characteristic features in the skull of Lagomorpha. At first sight the onty difference in this respect between Leporidx and Lagonyidæ appears to be that in the latter family the palatal bridge is shorter than in Leporide. On investigating the matter more closely, howerer, it may be seen that in Leporide the bony palate is shortest in the genus Lepus s. str., viz. in those forms which are most specialized for rumning and leaping; and that the shortuess is principally due to a reduction in length of the os palatinum. In Lagomyidz, on the contrapy ( Pl . 39. figs. 31, 36, " \(p\) "), the latter bone is comparatively elongate, while the part of the bony palate formed by the maxillaries ( m ) is greatly reduced, so that in some cases the latter do not eren join in the anddle line anteriorly, the middle of the anterior margin of the palatal bridge being formed by the palatine bones. As seen from the figures, Prolugus (fig. 36) is in this respect searcely different from Lagomys (fig. 34).

It might, a priori, be expected that this specislization of the Lagomorpha will be reduced to a minimum, in other words that the bony palate will be longest, in the oldest members of the group, and this is in fact so. Cope describes this part of the skull of Pulcolugus as follows:-"The palatine bones are flat and occupy more than half the palate betwcen the molars. Their common suture is at least as long as that of the maxillaries, and extends as firr forward as the posterior border of the second molar. From this point the anterior suture extends to the posterion border of the third molar. The palatal notch is rectangular, and is not wider than the palatine bone on each side of it." *

\footnotetext{
some phylogenetic speculation has been based thercon. The author asails himself of these two types, the tritubercular and the diprotodont, in tracing two primitive types in the tecth of one species, Lepus sarutitis; the anterior upper cheeli-tooth is referred to the tritubercular type; the conformation of the two anterior lower teeth, on the other hand, "decidedly suggests the molar's of Kangaroos and Wombats, and makes it probable that the ancestors of the Lagomorpha were Marsupials, holding about the middle hetween Phascolomys and Lagorehestes" ( p .545 ). liy the cheek-teeth of its ripe embryo, the Wili Rablit is far removen from Lepus curoput us ( p . 553 ); and tho cheek-teeth of the latter were crotved from the tritabercular type ( 1 . W5l). The rabbit's skull approaches the Marsupial type (p.551). The anthor seems to be unaware of the existence of deciduous check-teeth in the Leporidie. On p. 540 , the anterior of tho upper cheek-teeth is twice termed p. 1. Supposing that we have really to do with a premolar, the anterior premolar in the upper series would be p. 3, according to Hensel's mode of writing, adopted by the present writer, or \(p^{\prime}: 2\), according to the usual cnstom, but under no circumstances p.1. C'ensidering, however, that the two teeth referred to by liof. Noack belong, the one to a mature. the other to an unripe embryo of L. exroperes, in which species the tooth-change takes place only some time atter birth, the alleged \(p .1\) is in reality a d. 3 (d. 2 of authors). On \(1 \mathrm{~m}^{2} .544\) and 545 the remarkable circumstance is moted that in the half-grown L. scarctitis the second and third anterior upper check-teeth are more retarded in their derelopment than the same teeth in embryos of \(L\). europecus. The very obrions explanation is that those of the former species are premolars, those of the latter deciduous teeth.
* E. D. Cupe, "The Vertebrata of the Turtiary Formations of the West," i. p. 875 (157(i) pl. 1xri. figs. 1,4 (1-883).
}

The ouly known palate of Titenomys is that figured by Filhol *, which too is elongate. According to him \(\dagger\), the length of the palatal bridge in Layomys and Tilanomys respectively is as follows :-
\begin{tabular}{lc} 
& millim. \\
Lagomys. tibetamus........ & \(0 \cdot 00:\). \\
Lagomys ogotoner ........ & 0.0015. \\
Titrnomys risenoviensis... & 0.0045.
\end{tabular}

The suture between the palatines and maxillaries is not shown in the figure of Titenomys. Thanks to the kindness of Mons. M. Bonle, I have heen able to examine the original in the Paris Museum, and can state that in this oldest member of the Lagomyidae the family charaeter is already very erident in the reduction of the maxillaries, inasmuch as the palatines occupy the anterior margin of the bridge in the middle line, the two maxillaries not joining each other. The difference in the length of the palatal bridge between Tilanomys on the one side, and Lagomys (with Prolugns) ou the other, is therefore wholly due to the greater clongation of the former's palatine. In Palroolagus \(\ddagger\) both bones are lengtheued, as compared with other Leporidx, and espeeially with the most modermized species of the family. The anterior palatal noteh formed by the maxillaries extends forward slightly beyond the anterior margin of p. B, as it does in Vesolaghes Nelscheri (Pl. 39. fig. 38), which is one of the most primitive of recent Leporidae. The posterior palatal noteh of Pelecolergus reaches as far backward as a line miting the middle of the alveoli of m .1 . Besides, the horizontal portion of the ossal palatina is also transversally much less reduced than in most of the recent Leporide, the breadth of the posterior palatal notch being approximately equal to half the breadth of the space between it and the alveoli. While in this latter ehanacter Palcolayns converges towards the Lagomyida, or rather groes beyond them-for, to judge from the figmres, the palatal notch of Pulcolagus is considerably narrower than even in Titanomys-it is thoroughly leporine with regard to the part which the maxillaries take in the formation of the bony palate.

Those among recent Leporida which, on aecoant of their several primitive characters, may be placed in a separate section (Caprolagns-group), as opposed to Lepus s. str., are more prinative also in the character of the greater antero-posterior length of the palatal plates of the palatine and maxillary bones, as may be judged from varions instances figured in Pl. 39. Fig. 32 represents the palate of Cuprolagus, hispiches (Pears.) ; fig. 33, of Syltiluyns (Romerolugus) Nelsoni; tig. 37, the same part of Oryclolagus crrtssicuudatus (Geoffr.); fig. 38 that, already mentioned, of Vesolegns Netscheri of Smmatra. It is well known that the bony palate of the Rabbit, of which a figure is not given here §, has a greater longitudinal extension than in the Common Hare and that its patatal noteh is narrower' ; both these characters are much more pronounced in the young. Fig. 35

\footnotetext{
* H. Filhol, \(\cdot\) Étude des Mammiféres fossiles de Saint-Gérand-le-I'uy (Allier)," Ann. Sc. freol. x. pl. 3, fig. 16 (1879). + Op. cit. p. 31.
\(\ddagger\) Cope, op. cit. pl. lxri. figs. 1, 4.
§ Excellent lower riews of skulls of the liabbit, side by side with those of Leprs curopers. have been figured by H. r. Nathusius ("Über die sogenannten Leporiden, " pl. ii. 187(i).
}
(Pl. 39) represents these parts of a young Sylvilagus brisiliensis (Limn.), which closely resembles Palcolagus in the great antero-posterior extension of both the palatine and the maxillary bones and in the very narrow palatal noteh, both coming near to the normal condition ol Mammals.

As might have been expected, the Pliocene Lepus culdarnensis, Weith., also presents a more normal palatal region than the various specialized species of Lepus, and may for this reason alone be assigned to the Caprolagus section. The anterior and posterior palatal notches are much narrower than in L. europeus, and the whole of the bony palatal bridge is considerably longer ; this being especially due to the elongation of the maxillaries *.

The greater reduction of the palatal plate of the maxillary bone in Lagomyidæ, as compared with Leporide, might seem to be due to the greater backward prolongation of the formina incisira in the first-named family. On closer examination, however, it becomes evident that in reality we have to do with a fusion of two originally separated vacuities, riz. the true foramina incisira, and a sort of palatal fontanelle behind them. In Lagomys, the premaxillie generally, though not in all the species, join in the middle line between the formina incisiva and the fontanelle behind them; in Leporide, the confluence of the two fissures has generally, but not always, become complete. An approach to Lagomyidre (fig. 36) is given by the bottle-shaped appearance of the "foramina incisiva" which Bangs considers to be characteristic of "Lepus sylraticus transitionalis" \(\ddagger\)-the same occurs also in other American Leporidre-and which is but the remnant of the original separation of the troe foramina incisiva from the palatal fontanelle. I therefore do not think that Winge is right, when he assumes that the separation of the two openings is a secondary character in Lagomys, brought about by the new formation of a bony plate d. . Judging from Cope's figure \(\S\), the fusion of \(^{\text {f }}\) both openings seems to have already taken place in Peldeolugus. But if we judge from recent forms, in which the premaxillat are very thin in this region, it appears probable that the apparent fusion in the figured palate of Palcolagus is due to the defective preservation of the premaxillse in the figured speeimen.

\section*{On the Lisib-Sfeleton of Lagomorpifa.}

There is a great difference between the Lagomyide and Leporids, and between the varions members of the latter, in the absolute length of the fore and hind limbs, and in their relative length, compared with each other. The differences, moreorer, are not only in size; and it is the antebrachium which in the first place presents notable divergences in the different groups. Even for systematic purposes it will be necessary henceforth to take into consideration these, as well as other, parts of the skeleton; and we cannot content ourselves with such general statements as "hind limbs longer than the fore limbs," and "hind limbs and fore limbs subequal."

\footnotetext{
* A. Weithofer, in Jahrb. k.-k. geol. Heichsanstaht, Bd. xaxix. 1. SO (1ss9).
\(\dagger\) Proc. Bost. Soc. Nat. Hist. xsvi. p. \(40{ }^{-}(1520.7)\).
\(\mp\) H. Winge, 'Jurdfundne \(\mathrm{og}_{\mathrm{g}}\) mulevende Gnarere,' \&e., l. č p. 113: "Forskjellen fra Haren er kun, at det cgenlige \(F\). incisivem er afskilt ned en nyopstaatet, ikke altid fuldsteendig Benbro."
§ op. cit. pl. 1xri. fig. 1.
}

In comparing the characters of the common Hare (L. eupopezts) with those of the domesticated Rablit, Nathusius enters into full particulars of the differences presented by the antebrachium, summing them up in the following statements:-

Hare.
Uha weaker than the radins, sitnated behind the lattcr.

Rablit.
Ulna stronger than the radius, situated laterally.

In relation to the basilar length of the skull and the length of the rertebral column, the anterior and posterior limbs are in their totality, as well as in their different parts, longer in the Hare, shorter in the Rabbit.

Hare.
Humerus longer than antebrachinm.

Rablit.
Humerus and antebrachinm subequal in length.

Length of the antebrachium as compared with the tibia:-

Hare.
Antebrachimm shorter than the tibia by about one-fourth its leugth.

Rablit.
Antebrachinm shorter than the tibia by onehalf its length *.

With regard to the remarkable differences in the antebrachim of the two animals, the writer concludes that they are doubtless associated with their different habits, the Rabbit burowing and the Hare living above-ground \(\dagger\). Put in this general way, the conclusion is undoubtedly truc. Nathusius, however, does not scem to have been aware that the difference is chielly due to the specialization of the Mare's fore-leg, which specialization is nothing else than the begiming of the process carried much further in the modern swift-footed Ungulates. It therefore remains to be seen how far, if at all, the structure of the labhit's antchmehimm is a consequence of its burowing propensities, -an adaptation to them. For neither from what we know of its habits, nor from the structure of its fore-limh, can the Rabbit he considered to be a truly fossorial Mammal, as is, e.g., the Mole, or, among Rodentia, the genera Geomys, Sporlex, and Siphnetts.

In districts where the Rablit finds lonrowing in the ground too hard a task, it manages to do without it 我; as it sometinues does, perhaps, for other unknown reasons.

\footnotetext{

† Op . cit. 1. 33.
\(\ddagger\) W. Thompon states (Proc. Zool. Soc. Londou, part r. p. \(5 \cdot 1837\) ) that in the North of Ireland persons who tako liabits make a distinction leetwen the Burou-Rubit and the Bush-Rubbit, and that the latter is so designated in consequence ot baring a "form like the Hare, and which is generally placed in bushes or underwood." The Rev. G. T. Dawson, speaking of the Wild liabbit, says :- "There is a variety... Which never burows in the ground, lut lies bencath bushes, or among the herbage ot hedges or woods, and is called by the common people of that part of Hortfordshire which borders upon Bedfordsbire the Bush-Rablit, and in the northern parts of the same county the Ntub-Rablit . . . A non-burrowing liabbit may, in its distress, scramble into a hole, or burrow, if there happens to he one in its way, in which to die in secrecy; but, as far as ny own observation extends, I nerer remember one
}

One of my principal reasons for separating a certain number of Leporidee, under the designation of Caprolagus, from the swift-footed Lepus (figs. XXV-XXVIII), is the


Figs. NXT-XXIIII. Left antebrachium of Lppus timides, Linn. (L. variabilis, Pall.), \(\frac{1}{3}\) reduced. NXV, front view XXVT, ulnar (extermal) riew ; XXVll, radial riew : XXVIIl, posterior riew.
 to fifth metacarpals, \(v=\) carpale 5 (resalianum) : XXX, radial riew ; XXXI, ulnar riew.
structure of the antehrachium ; but of several of the former it is expressly stated that they do not hurrow at all, or at least that they are not habitual burrowers. I hare thought it would he instructive for my present purpose to reeord the observed facts of the physiology of the organs of locomotion of various Lagomorpha, by collecting as much information as is available to me.
of the bush-rabbits ruming to ground, even when wounded, and certainty it is contrary to its habits to do so under different circumstances " ( Zoolngist,' iii. p. 903, 1st5). In W. Thompson's "Natural Mistory of Ireland ' (vol. iv. p. 30 , \(18.5(i)\), his former statement is repeated, and strengthened on the authority of Dr. R. Ball, "who has long been aware of the difference of habit and appearance betreen burrow' and bush-rabbits in the County of Cork." In Fill's • llistory of British Quadrupeds ' (2nd ed. pp. \(344,345,1574\) ) it is reported that "on moors, where the soil is wet, liabbits often refrain from burrowing. and content themselres with runs and galleries formed in tho long and matted heather and herbage. In more than one instance we have known a family to take possession of a hollow tree and ascend its inclined and decayed trunk for some distance." In comment on this, Prof. Mores has drawn my attention to the fact that the ()riental llack-necked Hare (L. nignicollis) habitually resorts to the hollows in trees when pursued, and that while the Ewopean liabbit may bring forth its yonng above-ground ('Zoologist,' ser. 3 , rol. i. p. 18) the Hare may do so in a burrow.

Of Oryctolagus crassicaudatus, which, in the conformation of its antebrachium (text-figs. XXXII-XXXV), is almost identical with O. cuniculus (Pl. 38. fig. 30), Smith says in a general way that it iuhabits "rocky situations" in Sonth Africa, and that "its manners connect it closely with the Rabbit." * Alexander Whyte describes the same species in his journey through the high-lying comntry in the North Nyasa district, and he

 NXXIIf, front view: XXXIN, ulnar view ; NXXY, radial riew.
Figs. XXXTT-XL. Cupmolegus hispulus (l'ears.). - ldft fore-liml, nat. size. XXXV1, posterior view; XXXVII, front view: \(r=\) radiale, \(i=\) intermedium (lunar), \(u=\) ulnare. \(1-3=\) carpalia \(1-3\). \(\mathrm{C}_{4}=\) earpale 4 (hamatum) \(\mathcal{X X X V I I L}\), ulnar view : \(p=\) pisiform ; XXXIX, radial view : Xl, front view of antebrachium, proximal cnd.
too compares it with the Rabbit \(\dagger\). But nowhere hare I found it expressly stated that this species is burowing; the rocky "situations " and " places" to which, according to both observers, it is confined, certainly would not fuvour lurrowing propensities.

\footnotetext{
* A. Smith, in S. Afr. Quart. Journ. vol, ii. p. 87 (183:3) (sub "Lepus rupestris ").
\(\dagger\) "Perhaps the most interesting mammal we secured was the hare of the platean, and which might well be termed a 'rock-rabbit.' . . It is very local and jeculiar in its halits, confining itself to the highest and most rocky places on the plateau. On this account we found it most difficult to procure good specimens. It kept dodging about the granite boulders, and we seldom got a shot until it was duite elose on to us. . . . It was never fouvd out in the open . . . ." (British Central Africa Gazette, 15 tb Oct. 1895 to 1st Feb. IE96, p. 22.)
}

Of the "Lepus brasiliensis" of Paragnay, whose fore-limbs (text-figs. XXIX-XXXI) mueh resemble those of the Rabbit, D'Azara states expressly that it is not a burrowing animal *, and the same is contirmed by Rengger \(\dagger\).

About the habits of Sylcilagus sylcaticus, the "Grey Rabbit" of the United States, we know from Bachman that "though it digs no burrows in a state of nature, yet when confined it is capable of disging to the depth of a foot or more under a wail in order to effect its escape" \(\ddagger\). S. artemiside, closely related to \(S^{\prime}\). sylcuticus, is described by Clark as burrowing \(\$\).

Special recognition is due to the following graphic description by Cones of the locomotion of three different grouls of Hares, riz. the Marsh-Ware (S. potustris), the "Wood-Rabbit" (S. syltuticus), and the "Jackass Hares" (L. callotis). Comparing in the first place the two former, he says:-"The Marsh-Rabbit . . looks smaller, although actual measurement does not show any very decided difference in size. This deceptive appearance is owing to the different gait... The mimal's gait . . is a direct consequence of the comparative shortness of its legs—of the hinder ones particularly . . The animal's general configuration is more squat and bunchy; it seems to run with its body nearer the ground \(\|\), senttles along with shorter, quicker steps, more eonstrained and spasmodic, moving hy jerks, as it rere; and has little or nothing of the free bouncing movements that mark the prouress of the Wood-Rabbit. In these respects the lastnamed species is exactly intermediate between the Marsh-Rabhit and the large "Jackass" Hares (Lepus cullotis) of the West, in which length of stride, height of bound, and general freedom of swinging gait reach an extreme. These Western Hares are the swiftest of their tribe in this country, and the Marsh-habbit is just the opposite As attested by all observers, the speed of the latter is appreciably less than that of even

\footnotetext{
* 's Il ne fonille point de terriers, qumiqu'ou dise, qu'itant poursuivi, i] se cache sous des trones pourris et eutre les débris des régétanx." ( Essais sur l’llist. nat. des Quadrupédes de lat Province du Paraguay,' ii. p. Js, 1801 ).
+ J. li. Rengger, 'Naturgeschichte der siugethiere von P'araguay', 1s30.-" Höhlen oder unterirdische Gänge grabt es keine" ( 1,248 ). "sein erster Lauf ist sehnell ; er halt aber nicht lauge aus und wird bald vou den Hunden eingeholt " (p. 250).
\(\pm\) Journ. Acad. Nat. Sci. Philad. vol. vii. p. 33.5 (1937). The following statement as to tho feeble endurance in ruming of \(S\). sylveticus is almost identical with what Rengger says of S . bresiliensis:-_ Nlthough it runs with considerable swiftuess for a short distance, get it soon becomes wearied, and an active dog would overtake it, dif it not retreat into some bole of the earth, into heaps of logs or stones, or into a tree with a hole near its roots. . . . In the Morthern States, where the barrows of the Maryland marmot and skunk are uumerous, this hare retreats to their holes" (op, cit. 1. 324).
§ "Wherever the thorny clumps of chaplaral :mel the loose sauly soil alford protection to this smallest of rabbits, it may be found in great uumbers. No matter when or where one of these may be seen, a clump of chapparal or its burrow seem always at hand; thus it does not hravel fur, and a few jumps bring it to a place of safety.... The burrows usually run into saud hillocks formul around bushes: sometimes, howerer, they are dug into the bare compact surface." (J. H. Clark, in Spencer F. Baird, "Mammals of N. America.- lart ii. Special Report upon the Mammals of the Mexican Boundury,' p. 4n. 15.59.)
|| Cf. also Bachman on Sulvilnems phlustris: "Instead of leaping like the eommon Hare, it runs low to the ground, dating through the marsh in the manner of the liat." (J. Bachman, "Deser, of a new Species of Hare found in South Curolina," Journ. Acad. Nat. Sci. Philad. vii. 1. 194. Liead May I0th, Iと36.)
}
the Wood－Rablit，though it certainly appears to get over the ground quite cleverly， particularly to one who has just missed，by under－shooting，a rumning shot＂＊．

The most remarkable member of the family，as to its habits，is the＂Romerolugus Nelsoni，Merr．，＂from Mount Popocatepetl，Mexico，of which it is stated：－＂This singular animal has exceedingly short hind legs，and instead of moring by a serics of leaps，like ordinary rabbits，runs along on all foms，and lives in rumways in the grass like the meadow－mice＂\(\dagger\) ．Mr．E．W．Nelson，the discoverer of this creature，has furnished the following further particulars：－＂A search under the overhanging masses of long grass－blades showed a perfect network of large arvicola－like runways tunneling through the bases of the tussocks，and passing from one to another under the shelter of the outcurving masses of leares．It was evident that the rabbits were very numerous here ．．．So far as observed，these animals are strietly limited to the heary growth of saccatan grass，between abont 3050 and 3650 meters ．．They make their forms within the matted bases of the huge grass tussocks，byy tumeling passage－ways along the surface of the ground through the mass of old grats leaves and stems，and then hollowing out snug retreats within the weather－proof shelter thus obtained＂中．

I am unfortunately macquainted with the limb－sketeton of this interesting animal． Although from the foregoing description it results that it canot be considered a burowing animal，I renture to anticipate that its ulna will be found at least as little reduced as in the common hablit，and not placed behind the radius．

Hodgson§ gives the following information on the hahits of C＇uprolugus hispidus （Pears．）：－＂The Hispid Hare is a hahitual burower，like the Rabhit；but，unlike that species，it is not gregarions，and affects deep cover，the pair dwelling together，but apart from their fellows，in subtemacam abodes of their own excaration ．．Less highly endowed with the senses of seeing and hearing than the Common Hare or Rabbit，and gifted with speed far inferior to that of the former or even of the latter species，the Hispid llare is dependent for safety upon the double concealment aflorded by the heavy undergrowth of the forest｜｜and by its own burow，and accordingly it never quits the former shelter，and seldom wanders far from the latter，whitst the harsh hair of its eoat aflords it an appropriate and unique protection against continnal necessary contact with the longe and serrated grasses，reeds，and shrubs in the midst of which it dwells，and

\footnotetext{
＊Elliott（＇oues，＂Ohservations on the Marsh－Hare，＂l＇ros．hoston soc．of Natural History，xiii．［p．s7，se，，y （1869）．
\(\dagger\) C．Hart Meriam，＂Romerolagus Nelsomi，a new（ienus and S＂pcics of Rahhit from Momnt l＇opocntepetl，Mexico，＂ Proc．Jioul．Nuc．Washington，x．p．16：9（1－96）．
\(\ddagger\) Op，cit．Pp．160， 170.
今 P．H．Hodgson，＂On the Hispid Hare of the Nul Forest．＂J．A．S．Bengal，xri．1，pp．5is？， 544 （1847）．
｜｜lay later writers it is denied that C．hispidns is au inhalitant of the forest．Blanford（＂Fanna of hritish India， Mammalia，ii．p．4⿹\zh26灬．ls：nl）says ：－＂According to Hodgson the Hispid Hare inhabits the Sél forest，whilst Jerdon states with more probability that it is found in the Terai（that is，of course，the marshy tract usually thus called）， frequenting long grass and bamboos \＆c．＂Jerdun＇s words are：－－－＂It frequents jungly places long grass，and bamboos， and，from its retised babits，is very difficult to observe and obtain＂（T．C．Jerdon，＇Xammals of India，p．22f， 1867）．
}
dwells so securely that it is seldom or never seen even by the natives, save for a short period after the great annual elearance of the Tarai by fire ; and they tell me that it feeds chiefly on roots and the bark of trees, a circumstance as remarkally in harmony with the extraordinary rodent porer of its structure as are its small eyes and ears, weighty body, and short strong legs, with what has been just stated relative to the rest of its habits. The whole forms a beautiful instance of adaptation without the slightest change of organism"*. Eren if it had not been expressly stated, I would have concluded from the structure of the fore limbs (text-figs. XXXVI-XL) that the Itispid Hare is a burowing animal: in fact, the only member of the family whose organization betrays fossorial propensities.

Nothing is known about the habits of the Sumatra Hare, Cuprolagus (Nesolagus) Netscherit. From the structure of its fore limbs, Pl. 38. fig. 28, it may be safely inferred that it is a bad rumer, and it may be an occasional burrower; hut it is certainly much less fossorial than C. hispidus.

The mode of locomotion of Luyomy.s (L. pusillus.) is thus described by Pallas :"Incedunt \(L\). pusilli elumbi et subsultante gressu, sed propter brevitatem pedum, maxime porticorm, neque celeriter cumont, nee nisi inepte exsiliunt. In posticos pedes raro erigmontu" \(\ddagger\) Winge concludes from this that "the mode of locomotion is therefore the same as in Lepus." Besides, he thinks it probable that the ancestors of Lagomys have been better rmmers than the recent species; this, on aceount of the resemblance of the rump- and limbskeletom between Layomys and Lepus. Also, according to the same witer, some features in the skull of Layomys, showing that the or crans of smoll and sight are less developed, point nevertheless towards a former different conditions. As seen from the figures (Pl. 38. fig. 20), Lugomys resembles ordinary Rodents and Insectivores in the lateral position and non-reduction of the ulna, and also in its comparatively short hind legs. This is the primitive condition. Are we, then, to assume that the ancestors of Lagomys, starting from this condition, rednced their uha and shortened their hind legs, only to revert again to the former primitive condition presented by the living species? Equally far-fetched sems to me the supposition that the choance had formerly been wider and the eyes larger. Neither Prolagus (Pl. 39. tig. 36) nor Titunomys supports the former assmption, and there is no indication of larger orbits in Prolugns, nor of supraorbital processes in either of the two fossil genera. The statement, "incedunt L. pusilli elumbi et subsultante gressu," which recalls Cones's deseription of S. pulustris (" scuttles along with shorter, quicker steps, more comstrained and spasmodic, moring by jerks, as it were"), proves, in my opinion, nit incipient stage of the leporine locomotion.

\footnotetext{
* The view expressed in the latter part of the last sentence is not correct.
\(\dagger\) H. Schlegel, "On an anomalous specics of Ilare discovered in the Isle of sumatra: Lepus Nitschuri" (" Iutes from the Leyden Museum, vol. ii. note xii. p. Sit, lise \()\).

§ H. Winge, "Jordfundne og nulvende (inarere (liodentia)," p. 1 f B.
}

\section*{Fifth Carpal Ray.}

\section*{The Pisiform.}

Kranse describes the pisiform of the domestic Rabbit as articulating with the nhare on its rolar side*; in the deseription of the ulnat, it is stated that the distal termination of this bone has a condyle for the facet of the ulnare. These two statements imply that the pisiform of the domestic Rablit articulates-as in Manwith the ulnare only. If they are correct, the German domestic Rabhits are different from those of this country; for in the English domestic and wild Rabbits I find the hone called pisiform articulating with the ulna as well as with the ulnare; this is the ease moreorer in all Leporidae (Pl. 38. dig. 2, text-fignres XXII, XXXIV, NXXVIII), in all Lagomyidx (Pl. 38. fig. 4), and in the great majority of Mammalia. In the Leporide the pisiform, the proximal part of which extends considerably in a transverse direction on the volar side of the carpus, shows even two facets for the volare side of the uha.

From the following statements it appears that the so-called pisiform of Mammalia is a compound bone.

Daubenton mentions three accessory bones in the carpus of Mylobates and Inums ectudalus; oue of them is, in Mylobates, situated as follows: "il se tronve placé sur le joint qui est entre le troisirme et le quatrieme os du premier rang ; " situated, therefore, on the artienlation between the uhare and pisiforme 中. The carpal hones of Inus. are said to lave the same position as in IIylobutes, only diftering in their form §. In Papio the aecessory bone in question is said to be wanting \(\|\).

Curier's deseription is almost identical. Speaking of the "ossified nodules in the muscle tendons" of the capus, he says:-"Il y a a deux par exemple, dans le giblon et le magot: l'un dans je tendom du cubital externe, sur le joint du pisiforme avee le crméifurme . . . . mauque dans les stipujpus" *.

Lebeneq describes and figures ** a case in the Gibbon:-"Clez un Gibbon (HyTobrtes lenciscuss) de la collection de l'Université de Gand, il existe entre le eulitus et le enbital du carpe mu nodule osscux articulé latéralement avec le pisiforme ( \(n^{\prime}\). fig. 2S). Ce nodule me semble représenfer le cantilage qui disparait chez lhomme." (Reference is here made to the previons description of a eartilaginons nodule which is constantly met with in human embryos of the third and fourth month.) "En même temps que le erochet terminal du cubitus s'accuse nettement, il se développe dans le ménisque embryonnaire un nodule cartilagineux elliptique, laisant suite d'une part à la pointe du crochet et de l'autre se dirigeant vers l'extrémité proximale de l'intermédiaire." It disappears

\footnotetext{
* Wr. Krause, ' lie Anatomis des Kaninchens in topogr. und operativer Rücksicht,' 2te Autlage, p. 120 (1854).
+ L. c. p. 119.
\(\ddagger\) Butfon et laubenton, Hist. nat. gén. et partic. xiv. p. 105 (1766).
§ L.c.p.12\%. || L.c. p. I51.
- Lerons d'Anat. Comp. \(2^{e}\) ed. i. p. 42.5 (1835).
*: H. Lehou"t, "Rech. sur la Marphologie du Carpe chez les Mammiferes," Arch. de Biologie, publ. par Van Beneden et Van Bambeke, ri. p. S:3, pl. iv. fig. •2. (1804).
}
constantly after the fourth month＊．Leboucy considers this cartilaginous nodule of the hmman foetus the homologne of the ossicle in Mylobetes；both are parts of the pisiform，the pisiform of hman anatomy being，in his opinion，but the distal epiphysis of the complete pisiform \(\ddagger\) ．In a later paper the cartilaginous nodule is homologized with the os trigonum（tarsi）：＂je crois done pouroir considérer ce nodule et l＇os trigonum comme homolognes＂中，whence it would follow that the ossicle of Hylobutes is equally the homologue of the trigonum．

The ephemeral cartilage of the human embryo has since been discovered in an oswified condition in a carpus of an adult，and receired the name triquetrom secundarium §． Both this cartilage in the feetus and the triquetrum secundarium oceupy a more radiad position than the ossicle of the Gilhon，wherefore it would appear that ther are not， after all，the homolownes of the latter，and this is proved to be the case by the discorery by Kohlbrïgge of tero accessory ossieles in the Gibhon．In three specimens of the three species Itylobutes leuciscus，II．＂gilis，and IV．Mïllemi，an ossicle is situated between the styloid process of the nlna，the pisiform，and the mlnare．It rests on the processus styloideus and articulates with it and the ulnare．The pisiform joins the carpus at the point of junction between the ossicle and the ulnare．Kohllnügge recalls the description of Daubenton，in whose honour the ossicle is named（ossicutum Dtubentonii）； and he adds that Camper had seen it in the Imuns \(\|\) ．In the carpus of a Bylobutes synduciylus the folluwing condition is deseribed ：－＂Situated between the radins and the unare is an ossicle．which is joined to the radius and to the ossiculum Daubentonii ly a fibrous ligament；between both is cartilaginons tissue．＂The ossicle which，to all appearance，is that described ly Camper in the Mandrill－and which has hence received the name nssicntum Camperii－was present in hoth hands of the Gibluon；in the left manus the ossiculum Daubentonii was redueed to a small osseons moleus © From its position，the ossicnlum Camperii corresponds to the cartilaginous nodule discovered by Leboucy in the human fotus，and is therefore the homologne of the triquetrum secundarium（triangulare）of Man＊＊．There can be no doubt that the ossiculum Daubentonii is the element which Leboneq has descriled in an adnlt 1l．lenciscus，since they occupy the same position．In Lehoucq＇s figure－dorsal aspect of the carpus－the pisiform（ \(p\) ．）has been remored backward，in order to bring it into evidence \(\dagger\) 中．

\footnotetext{
＊Op．cit．p．S1，pl．iii．fig． 17 ．
+ Op．cit．p．Sis．

§ Pfitzner，＂Bemerkungen zum Aufban des menschl．Carpus，＂Verh．Anat．Ges，7．Vers．in Gattingen ls93 （Ergänzungsheft Anat．Anz。 viii．p． 191 （ 1893 ）．－N＇ee also Morph．Arb．ir．p． 308 （1495）．

II J．II．F．Kohlbriigge，＂Yersuch ciner Anatomit d．Cienus Hylolates＂（M．Weber，Zool．Ergebns einer Reise in Niederländisch（1st－Indien，i．pp．3：3心，3：3！，pl．xvii．tig．！（1490 91）．
－Op．cit．p． 339 ，pl．xrii．fig． 10.
＊＊＊The ossiculum Camperii（triquetrum secundarium，triangulare）or，as Thilenins terms it，os intermedium ante－ brachii，has been found in Homo，It，lubates，and Inzus，as mentioned in the text，and，by Iffitner．in a carpus of Phascolomys．1＇fitzner＇s specimen is figured and described by Thilenius（Morph．Arb．v．f．3，pl．i．fig．12（18655））． I find what 1 take to be the same bone in Icmurs，Insectirora，and Rodentia，whercou more will be said in another place．（See P．Z．S．London，1899．pp．42－43\％．）

十† Ot．cit．p． 101 （explan．of fig．こと）
}

Leboney's riew that the human pisiform is the homologue of the mammalian pisiform mimus the ossicle he figures in the Gibbon receives confirmation by a discovery of Pfitzner's in the human adult carpus. He found in fire cases a proximal process of the pisiform \({ }^{\text {* }}\). To this "pisiforme secundarium. would correspond the " umare antebrachi" " of Thilenius, met with in ten mams of tive embryos, where it is situated volad and uhad of the proc. styl. ulne, and proximatly from the pisiform \(\dagger\). Both Germon anthors take this element to belong to the same category as the os Camperii, viz. to be a carpal of a "preproximal series." We have, however, seen that Leboneq shows that the os Danbentonii, which in Hylobutes is not unfrequently an independent ossicle, is contained in the mammalian pisiform. For my part, I see no stringent reason to assign this os Daubentonii to a "preproximal" series; from its position I consider it to be the first, proximal, carpale of the fifth ray, and it might therefore appropriately be designated as V. I; it corresponds to the I. 1 on the radial side, the radiale marginale, which in Echidnu actually articulates with the radins (Owen). In Reptilia, especially in Empdidæ, we frequently find an ossicle or a cartilage oceupying the position of a V. 1. Its absence in the Urodela is easily explained by the reduction of the whar part of the urodele carpus, even the fifth digit being lost. The reduction of the uha and the uhad extension of the uhare may account for its being, in Mammalia, generally situated on the volar face.

What, then, is the distal part of the mammalian pisiform? One might suggest, as the easiest expedient for getting rid of this embarmasing element, that it is \(\mathrm{V} . \boldsymbol{2}\), viz. the second carpal of the fifth ray.

But, besides there being, as we shall see herealter, another competitor for this distinction, there is not the slightest evidence of the distal pisiform having at any time ocenpied a similar position. On the other hand, it shows evidence of a former greater complexity. In most, if not in all Mammalia, except Man and the Anthropoids, the pisiform is provided with a distal epiphysis; and in some there is more than that. In the liodent Buthyergns maritimus, as described by Yon Bardeleben, ". . . the precpollex and the postminimus are both rery well developed. The latter consists of two bones, of which the proximal ( \(p^{p} p\).) is the true pisiform, and measures a millim, in length, white the distal is 7.5 millim. in length. We must therefore in the future distinguish a proximal from a distal 'pisiform,' and I regard the former as, in all probability, the carpal, and the latter as the metacarpal segment of the postminimus " \({ }_{\text {中 }}\).
'Two skeletons of Buthyergus muritimus are in the Natural Ilistory Musemm, neither of them quite adult. In the older one, which is the original of Von Bardeleben's figure: , the distal part of the pisiform is incompletely ossified, as shown in the figure; it is still completely cartilaginons in the younger specimen. A similar, more or less ossified distal

\footnotetext{
* Morlh. Arb. iv. p. \(\quad\) O (1895). "Dieser Fortsatz war (in rier Fallen) proximal, und zugleich eher etwas dorsal als rolar gerichtet. seiue phane Fläche stellt eine continuierliche Fortsetzung der Gelenkflaiehe des Hauptatuchs dar: im Übrigen war der Fortsatz ringsherum durch eine tiefe Einziehung abgesetzt."
\(\dagger\) Morph. Arb. v. 1. 470 (1596).
\(\ddagger\) " On the l'reppllex and l'rahallux, with observations on the Carpus of Theriodemens phyturchus," l'roe. Zool.
 Anz. iv. 1. 10 s (188:9).
}
pisiform I find in the lystricine Ctenomys and in Jlus，and it will probably be met with in many other fossorial and climbing Rodents．

What seems to be a remarkable adaptation of the distal pisiform to a special function is exhibited lyy the strong cartilage，which in Pteromys is prolonged to support the lateral membane serring as a parachute．Thilenius makes of it an element of an antebrachiak scries，his＂ulnare antebrachii＂＊；but he is misled ly Owen＇s mach reduced figure of the skeleton of a＂Pteromys colucella＂占，in which the detached cartilage has been drawn proximally to the pisiform and separated from it by a small interspace． The true comection of this cartilage was already known to Buffon \(\ddagger\) ．He described it as a bone；but in the only skeleton（Plerom！s munificus）at the Natumal Mistory Museum in which this element is preserved it is perfectly eartilaginons，and as such it is described by Owen in Sciuropterns colucella §．In I＇teromys mengificus it is chiefly attached to the distel end of the pisiform，and，by a much smaller process，to the tuberosity of the fifth metacarpal．Its dircetion is in the begimuing right lackward，in the prolongation of the long axis of the ossenus pisiform ；lont gradually it thrns upward，forming in its entirety a semicircle．It might be mantamed that the patagial cartilage of Scimopterini is in orgin quite extraneous to the pisiform，and that it has only secondarily hecome supported ly this widely projecting bone．With the seanty material at my disposal，I am not in a position to follow up the matter closer，nor is this the place to do so．A clue might be obtained from young specimens of I levomys；and if they should show both the usual piriform epiphysis and the patarial cartilage，they would sumport the riew of an extraneous origin of the latter．

The lengthened subeylindrical bone which in the insectivore Chrysomboris extends from the cappus to the lmmerus，＂simulating a thitd antebrachial bone，＂was considered． by Meekel \(\|\) ，followed by Carns © ，Peters＊＊，Giebel 中p，and Dobson 中 \(\ddagger\) as an ossification of a tendon；resarded ly the latter there as that of the m．Alexor digitormon profmadus．


\footnotetext{
＊Morph．Arb．（Fchwalbe）5．1．sus（18！5）．
\(\div\)－Anatomy of Yertelurates．ii．p．30．．fig．fot（INati）．
 quatrieme os an promier rans du carpe．of qui seitend ohliguement en arriere et en hat lo long du bord de la

§ L．c．
 zum Speichenende［it is，bowever，on the ulnar sidej dev Ifundwnrzel rehendes，starkes，rerknüchertes hand．＂
－＂．．．ein dritier Knochen des Untergliedes，Welcher jedoch nur als cine verkmochurte Sehne，onter vielmeln granz rerknöcherter Mnskel（flemor compi ulmuris），anzuschen ist．＂－（＇．（i．（＇urus，Filanterungstafeln zur vergleichenden Anatomic．ii．p．：：1．Taf．！．fig．1！1，b＂（1心よう）．
＊＊IV．Veters．Naturw．Keise nach Monsambique，Zoologie，i．p，Fo（1852）．



Schreber＇s •sugthicre；Suppl．ii．1．120）（1－41）．
－P．（ierrais，Hist．Nit．des Mammifires，i，p，ごらこ（I－jt）．
＊＊＊K．（1wen，＂（）n the Anatomy of Vertebrates，＂i． 1 ． \(30 \geq\)（Is66）．
SECONL SEIRES．－ZOOIOGY，VOJ．VII．
}

From the deseription given by Dobson, it becomes quite evident that from the distal cad of this bone there arise tendons for the fon digits, so that we have here a bone functioning as the common tendon of the flexor digit. prof. From this, however, it does not necessarily follow that it is an ossified tendon. (The pisiform of Man is imbedded in the tendon of the m. ulnaris internus: but scarcely any anatomist will to-day persist in considering it to be a tenontogenons sesamoid. It has been degraded to play the part of a "sesimoid" *, and that only in Man and some of the Anthropomorpha.)

Dobsou has figmed the volar aspect of the earpus ol' a Chrysochloris Trerelyani中, in which the alleged ossification of the \(m\). flexor prof. tendon has been removed. Here we see. ulnad from the lumar, the flattened face of a bone (us.), which is not referred to in the text; in the explanation of pl. xiii. fig. 5 it is termed the "nlnar sesamoil." Carus \(\$\) has seen and described this ossicle, and so hawe D'Alton sen. \& jun. § The first-named states that the "ossified tendon" starts (" ausereht") from it ; both Carus and the l)" Altons call it a pisiform ("Erbsembein"); but, so far as 1 am aware, later anthors, with the exception of Dobson, have overlooked it.

In a skeletom of Chrysorletoris "urea, this so-ealled sesamoid articulates dorsad with the uhare, dorsad and radiad with the lunit, proximally with the ulna, volad and distally with the "flexor dig. prof. ossification." The latter shows at the dorsal side of its distal base two facets, the larger mhad one for the " "hlum" sesamoid," the smaller radiad for a roler and distal projection of the lunar:

I take this "ulnar sesamoid" to be the ossiculum Daubentonii, viz. tho basal part of the pisiform; but, owing to the distorted condition of the Chorysochloris carpusthe lunar articulates with both radius and ulna-and from my insulficient material, which consists in a single skeleten of one of the smallest species, I camnot state my ease with greater certainty. If my view is correct, then the "tendon ossification" is in all likelihood the homologne of the distal part of the pisiform of other Mammalia, where it rery often starts backward at right angles from the long axis of the limb, sometimes, as in Iylobutes \(\|\), direetly downward, and sometimes more or less mpward, viz. in a proximal direction (Tulpe ). Which is the primitive direction I cannot for the present decide. The Chysochloride vary so much from one species to the other that Cope has divided them into three genera ; and we may iope that it will be possible to settle the question of the homology of this curions lome when the skeletons of these different forms shall have become available for comparism.

It appears to me that the distal part of the pisiform will prove to be a remmant of a lateral rat, which only secondarily entered into connection with tlie ulnare and the ulna. Of this lateral ray the other aecessory distal clements of Buthyproges, Ctenomys, Mus, and

\footnotetext{
 beins," (regenbaur, Lebrbuch d. Anatomie des Menschen, (ite AuH. i. p. föl (l-9:) ).

 Kohlbrigge, l. c. fig. 10.
}

even the cartilage of Sciuropterini, possibly were parts. There is not the slightest evidence that the lateral ray has ever been a digit of the manns of the Tetrapoda.

\section*{Curpule 5 (V. 3).}

The question whether there is some ground for assming a central carpale (V.2) in the fifth ray is closely comected with the present subject, so that it will be dealt with in this place.

I have known for a lome time a comparatively large facet on the proximal nhar side of Metac. I in two shecies of the fossil Prolayns, \(P\). oeningensis ( \(K\) ïn.), and P. surdus (Wism.) (Pl. 38. fie. 19. v), for whieh I could not account, the metaeaprals of Lepus, which were at my disposal at the time, showing mothing of the kind. This same facet I hare of late fomul to be present in Lagomys. (L. refescens), where it articulates with a small ossiele, which also presents a facet to the unare (Pl. 38. fig. f, e). The ossicle is likewise present and has the semme eomections in Syleilerges bresiliensis (text-
 condetes (text-fisures XXXIIT \& XXXIV). In two other species (Nesolugus Netschere and ('uprolates: hispuders) the facets are risible, lout the ussicte has been lost.

What is the ossicle in question?
As is well known, Gerenbaur was the first to express the opinion that the mammatian hamatum is a compoumd of carpalia 4 and \(\overline{5}\), on the ground that in lower forms we tind the fourth and fiftlo digits provided each with a separate carpald ". Lethoneq sers in the
 ne correspond exaetement dans les premiers stades de développerment qu’an métacarpien IV seul; le métacarpien V est platé latéralement par mpport à ce carpien. Le carpien \(4+5\) se sépare de l’axe au niveau de l'intermédiaire; quant au \(V^{\text {e }}\) métrearpien, tont faif supposer que son rapport arec lo dernier os de la pangée distale est secondaire ehez les mammiferes; primitivement e'est tonjours arec le TVe mátacrpien seul que ce carpien est en continuité. On ne voit à ancun stade de développement co carpien formé de denx parties, on présentant lo moindre restige de sa donble origine. Oì serait ators le carpien 5? En examinant lé premiers stades de développement, non-sonlement ehez l'homme, mais chez les divers mammiferes que j'ai pu ćtudier, , moit que le métatarpien V est placé en face de loos culital. mais séparé de lui par un interstice plus erand que celui qui sépare les autres métacarpiens de lenu earpien correspondant. On peut admettre que cest an nivean de cet espace que doit se trourel le carpien í. Quant à déterminer ce qui doit représenter ce carpien, on pent armettre son absence complète, ou bien le considérer comme non ditióreneié, et contoun riptuellenent dans un des éléments squelettiques du voisinage : suit l'os cuhital, soit le métaearpien V. L'hypothèse la plus prohable serait de considérer le carpien à eomme ne s'étant pas differencié is l'extrémité proximale du métacarpien \(V\) " \(\dagger\).

\footnotetext{
* Untersuchungen z, verchl. Anatomic d. Wirluelthere, i. 1]. Ł5. \(53,1=1\) (1-6t).
+ "Rech. sur la Morphologie du Carpe det. les Mammiteres," Arch. de Biologien publ. par E. van Beneden et ('h. yam lianveke, pp. 9上), 93 (1884).
}

In the following year Turner described and figured five distinct distal carpal bones in a Whale．After having mentioned that in Mesoplodon bidens＂carpalia \(4+5\) formed a single bone ．．．Which was groored on its dorsal surface opposite the interval between metacarpals IV and V，＂he proceeds to describe the earpus of an adult Myperoodon rostralus．＂The distal carpalia are five distinct bones，not so regulanly faceted as those in the proximal row，and with a larger propertion of cartilage between them．These bones pass from the radial to the ulnar border in regular order，as C 1 to C 5 ，and each is associated with the metacarpal bone of its corresponding digit．A similar arrangement exists in both limbs，and the carpus possesses also an elongated pisiform cartilage，which in one is partially ossified＂＊．

Von Bardeleben had previonsly made the following statement ：－＂Deutliche Anzeichen einer friiheren Tremmug in zwei Elemente zeigt das Hamatum bei den Beutelthieren， weniger auffallend bei den Nagern，sowie bei Ziphins（Hyperoodon）．In zwei Stücke getremnt，aber，anf der einen Seite wenigstens，schon im Terwachsen begriffen，ist es an dem skelete eines jungen Bären in Berlin．＂\(\dagger\) ．

To these assertions Batur replied that he had never in any mammalian embryo observed the hamatum to be the outcome of a fusion of two elements，and he adds：－＂Wenn es bei äteren Thieren den Anschein hat，als waire eine Theilung vorhanden，so ist dies eben etwas secmodiares und ist morphologiselı nicht verwendbar＂中．In his latest utterances on the sulyect §，Von Bardeleben mentions only the separation of the hamatum in ＂Ziphius：（Ityperoorton），＂thus tacitly withdrawing the statements regarding other Mammalia，made at the merting of the Jenaische Gesellschalt of May 15，1855，above quoted，as well as in a subsequent meeting of Oetober \(30 \|\) ．

The manus of the Jena specimen of Ziphins carirostris，to which Von Burdeleben refers，has been described and figured by Kükenthal．It contains altogether three distal carpalia：the one resting ou Metac．IV and I shows on its dorsal surface a delicate furrow，＂eine zarte Furche als Andentung ciner fröheren Tremung zweier Carpatial＂T． This is what Von Bardeleben，in his＂Referat，＂calls having foumd in Ziphins＂eine natiulliche Zerlegung des＇Hamatum＇in das Carpale IV mid Canpale V＂＊＊，and further on：＂Dass Ref．im Mai 1885 dir primitive（violleiclit secunditre－jedenfalls dem Verhalten bei Urodelen entsprechende）Trommong des＇Hamatum＇oder Carpale \(\downarrow+5\) （Gegenbaur）in Carpale 4 und Carpale 5 hei Ziphius corirostris aufland（an der Hand des Jemaer Exemplars）．＂\(\dagger \dagger\) ．

In lis subsequently－published rescarches，Kïkenthal deseribes fresh facts and sums up those previously recorded 蚶．Tn embryos of Behrya and Honodon there sometimes

\footnotetext{
＊Journ．Anat．Physiol．xii．pp．1s0， 183 （158if）．
＋Jenaische Leitschr．f．Naturw．xix．（xii．），Suppl．ii．］．s7，Sitzung am 1．）．Mai 188．
\(\ddagger\) Zonl．An\％．1：s5，p．f゙ 7 ．

Jen．Zeitschr．xix．（xii．），Suppl．iii．Nep．－Abdr．p．TS（1685）．
－Denkschr．d．med．－naturw，（ies．zu Jena，iii．Ip．：sc，tif，pl．iii．fig．1s（1889）．Nee aliso E．Losenberg，op．cit．
p．\(\because\), frotnote 4 ：Kukeuthal，in Morph．Jahrb．xis．p． 56 （1s93）．
＊＊Op．cit．p．200：3．帊Op．ort．p．301．
\(\ddagger+\) Denkschr．med．－naturw．Ges．Jena，iii．pp．268－280（1593）．
}
occur five carpalia. An additional instance of five carpalia in an adnlt Myperoorlon is adluced from a specimen in the Royal College of Surgeons*, and two examples in embryos of the same genus \(\downarrow\). The reduetion in the number of carpalia is explained by fusion or ranishing ("Schwund") ; the fusion is brought about in two different ways:"Bei den Ziphioiden verschmizat das Carpale distale 5 mit dem C. dist. 1, es kommt also zur Bildung eines Hamatums: hei den Delphimiden versehmilzt das Carpale distale 5 mit dem Ulnare, oder aber es kommt üherhaup zu einem völligen Schwunde des ersteren, mod seine Stelle wird rom Thare eingenommen." 'Transitions betwern both types of reduction oceur in Belugu and Momodon.

In an embryo of Emys Tutarit, of S mm. length, Rosenberg found in the place of one hamatum two completely-separated cartilages. "Der mehr uluar gelegene ist etwas kleiner und steht ansser mit dem Ulnare und seinem radiahwarts gelegenen Nachbarclement nur mit dem Metc. IV in Bezichumg. Der andere der in Rede stehenden Knorpel tragt das Metc. IV; in seinem dorsalen Abselmitt wird ar aneh von dem Mete. III berilnt, welchem übrigens scin eigenes Carpale zukommt. Es ist kein Zweifel, dass diese beiden ovoiden Knorpel die zu postulirenden Carpale 4 mod Capale 5 sind, die in topisehem Verhalten zu ihren Metacarpalien rorliegen . . es stellen daher das Carpale 4 und Carpale 5 in diesen stadium volkommen selbständige Elemente dar." In three larger embroos ( 10 mm .) the same investigator observed three stages of fusion of the carpalia in question. He considers that this result supports Gugrenbaur's view with regard to the hamatum of Mammalia 中.

Pfitzner has given the name (Os Vesuliumm to an ossicle in the luman carpus, first described by Vesalius, who considered it to be a sesamoid. It is situated on the ulane side of the hamatum, and its distal lacet tonches the tuberosity of the fifth metacarpal §. Later on, he mentions two other cases in Dan, one found by Gruber \(\|\) and a third by himself - In Vesatius' case, theossicle articulated apparently with the hamatum and Metac. V. In Grmber's ease "begann es rom חamatum abzuwandern und sich dem Met. V enger anzusehliessen, mit dem es wahrscheinlich schon coaleseierte." In Pfitzner's own case finally, the ossicle had no more connection with the hamatum, and had undergone a synostosis with the Metac. V. Pfitzner continues: " Als weitere Rückhiddungsstufen haben wir wohl anzmehmen, dass es vom Met. V gänzlich assimilirt wird und in dessen Tuberositas aufyeht," a view which is confirmed by what Thilenins, who terms this element "Carpo-metacarpale 8," has found in the human cmbryo *** Pfitzner is of opinion "dass in gewissem Sinme das Os Vesalianum, namentlieh in semer ursprünglichen Lage, einem hypothetischen Carpale V zu entsprechen vermöchte." Like their predecessors, neither P'litaner nor Thileuius lave met in the human carpus with a division of the hamatum into a carpale 4 and 5 , in Gegenbaur's sense.

Pfitzner's os resalianum earpi occupies about the same position as the ossicle in
* Ihil. p. \({ }^{2}-\mathrm{S}\), test-fig. \(11 . \quad+\) Ihicl. text-figs. 12, 13.
\(\ddagger\) Morph. Jahrb. xriii. pp. - 9 (149\%).
§ Morph. Aib. i. p. Tsti (18yロ).
If Areh. f. Anat. Phys. p. 499, 500, Taf. xii. (1-70).
- Morph. Arb. iv. pi. 543,544 ( 1895 ). ** \(\mathrm{Ib} . \mathrm{v} . \mathrm{pp} .45 \mathrm{~s}, 489\) ( 154 H ).

Lagomyide and Leporide mentioned aloove．I am not aware that it has ever been recorded before in lagomorphous Rodentia；while it seems quite a common element in Mammalia provided with a well－developed fifth digit，at amy rate in Rodentia，Insectivom，and Edentata，and was known to the older anatomists．Curier mentions it in the Great Armadillo（Priodon gigentens），and deseribes and figures it as sitnated laterad of the unare and articulating with the Mctac．\(V^{*}\) ．In the figure published be Elower \(\dagger\) ，it would appear to articulate with the uluare as well．As to its presence in Rodentia，Cuvier remarks：＂Eutin il y a très sonvent aussi an bord externe du carpe，en dehors du cunćiforme et de linciforme，un os surnuméraire，petit et lenti－ culaire；on le voit dans le costor，le porcoépic＂中．It is ligured in a carpus of the Castors．In the＇Leçons d＇Anatomie comparée＇mention is again mate of this＂os surnuméraire＂in the Hystrix：＂．．．il y a un as surmméraire entre le pisiforme et l＇os métacarpien dur cinquième doigt；il cot attaché sur los crochu＂｜｜．

Thitemins \({ }^{\text {a }}\) ，quoting Curier＇s digure of the Custor carpus，is inclined to consider this ossicle as his（Thilenius＇s）＂uhare extermm＂＝the ularar part of Pfitzor＂s triquetrom bipartitum of the adult，found in the hamin embroo＊＊．Ite adds，howerer：＂Inforge der radialen Verschiebmong des Capale \((4+5)\) ereicht es indessen auch das Metac．V．＂ The question is whether，when an os resaliamm is present，the hamatum is really displaced，or is not rather in its original position；only secondarity either supplanting the resaliamm，or acting in a compensatory manner for it，when the latter is either displaced or has disappeared．When comparing＇thilenins＇s fignes 11 and 12 of this ＂nhare externm＂＂\(\dagger\) 中 wh figures 13 and 14 中中，representing a later stage，the impression is conseyed that in the latter this ulnare externm（ur）has been displaced proximally by the uhaul extension of the hamatmon．I secondary pronimet displacement of a carpal （or tarsal）wonld，howerer，be quite munsual，and Thitenius has axpressed some doubt \(\widehat{\$}\) whether the figures mentioned all represent the same bone．In tig．11，where we abuts upon Stetac． \(\mathrm{T}^{T}\) ．the former element misht he P＇itaner＇s resalianum（carpo－metacarpale S ． Thitenins）．The text－figure NXXIS of the present paper seems to exchade the possibility，rentilated by＇íhilenius｜｜｜，that＂resalianum＂and＂uhare externum＂－ which have not yet been fonud together in the same manns of Man－might represent one and the same bonc．The enomons unad and rolad expansion of the whare，
 also－leads to the assmmption of its being a compound of an ulnare＋ulnare extermm Thiten．The＂uhare extemum＂（＝ulurr part of triquetrum bipartitum P＇fitzn．）would then be the second（eentral）carpale of the tifth ray（ \(\boldsymbol{Y}, \stackrel{2}{x}\) ）．

Meekel has described the os vesalianum in Erinucens：－＂Der Iyel hat in der obern， weit breitern Ordnung cier Knochen．Kahn－und Mondbein sind zwar verwachsen，
＊Uss．foss．v．1，p．1ご（1き23）．
\(\dagger\) •An Introduction to the Usteology of Mammalia，＂Brd ed．Hig． 110 ＂ 1 ，＂p． 307 （1585）．

If Lerons d̈Anat．comp．E己de tid．i．13． 127 （1535）．
－Morph．Arb．（Wehwallee），จ．pp．50s， 509 （1s96）．
＊＊Murph．Arb．r．pp． \(473,47 \pm\)（1ऽ96）．

allein das grosse dreicekige Bein trägt anssen mot vorn cinen kleinen, runden Knochen cingelenkt, den man ein zweites Erbsenbein nenneu kann. Von den vier vordern ist das Hakenbein weit kleiner als gewïhlich, und das dreieckige stösst daher aussen beträchtlich weit an den fünften Mitterhandknochen" *.

Owen meations the same ossielo in the Iferlgehog. but more distally :-" 1 sesamoid is attached to the ontside of the base of the metacarpal of the digitus minimus" \(\dagger\). In a left carpus of Erinuceus curoperus lying before me, the ossiclo articulates with hoth the ulnare and Metac. T, the facet for the latter being smaller and, as in Priodom, sithated uluad from the ulnare. The same lone is mentioned in Gymmera by Dobson + .

Referring to this ossicle, Leboucq says:-"Ce qu'on appello 2e pisiforme, existant chez quelques mammifires (hérisson, taton, ete.), n’est qu’un nésanoïle développé dans le tendon de l'extenseur cubital du carpe" §. It may be a matter of surprise that, in the same chapter in which Leboucy insists with strong arguments that the pisiform cannot he classed among " los os sésamoïdes," lee casts aside with a few passing words this equally important bone. The explanation is to be found in the words "chez quelques mammifires;" the author being, evidently not sutficiently aequainted with the "os resaliantum."

Haring placed the facts bofore the rader, 1 have now to sum up. All the attempts (Leromeq, Banr, Rosenberg, Ptitzner, Thilenius) to trace ontogenctically the presumed finsion of carpalia 4 and 5 to form the "hamatum" have contessedly failed. Gegenbaur explains this negative result by supposing that ihe Itammalia inherited the "hamatum," from lower Vertebates. This leads him to the assmmption that the oceasional oecurrence of two separatr capalia (tand a) among Cetacea is socondary; the more so as wr find other very considerable changes in the manns of these animals \(\|\).

To this argument might be opposed the daily increasimg number of instances brought forward in which wr see primitive characters occurving precisely in those species, or in those organs, which in othor respects are highly diflerentiated (specialized), the preservation of old chametres being obvionsly due to the specialization of others. This by no means new troth was, if I am not mistaken, first emmetated by Haeckel.

In support of the foregoins, 1 whish to wfer to a very noteworthy remark by Gegenbant himself. In defence of certain conclusions arried at in his well-known " (iliedmassenskelet der Enaliosanrier" \({ }^{\circ}\) T, he states that in Sauropterygia and Ichthyopterygia the

\footnotetext{


II " Dir Finheithehkeit des IFammhm der Nitugethiere ist von mir als ein auf dem Wege der lhylogenese erworbener Befund erkiart worden, dit in niederen Dotheilungen der vierte und finfto Finger je ein diseretes
 dass im C'arpus der Cetaceen der viculere Zustanl noch zu erweisen ist, sellost wenn auch unter den vielerlei dort bestehenden Befunden ein Carpale \(\pm\) und ein C'arpale 5 sich darstellt. Deun die übrigen Veramlerungen sind in dirsem Inamdabschnitte zu bedeutent, als dass (in sucuntia, crfolgtes Zustiudekommen eines dem ursprimglichen ämhichen Verhaltens zweier distaler Corpalia ansgeshlossen wäre." (C. (iegenbaur, Vergl. Anat. Wer Wirbelthiere, i. p. \(5+2,1 s t s)\).
- Jen. Zeitschr. F. (1560).
}
adaptation to a new function does not in any way explain the typical features of their limbs. "Where we meet with similar udaptalions, the original condition hus never been completely effaced" (italics mine)*.

The undivided condition of the "hamatum" in terrestrial Mammalia ean now be explained in a rery simple and obrious manner, since by means of the "os vesalianum" we are enabled to show that the presence of a separate earpale 5 is nut in the least limited to af ew cases among Cetacea, but is a frequent oceurence in other Mammalia likewise, a circumstance which has hitherto either been wrongly interpreted or entirely overlooked. The "hamatum" of Mammalia is not carpale \(4+5\) of Reptilia, but it is a "arpale 4 which, as a male, has become enlarged, and has, in addition to its own functions, usurped those of carpale \(\tilde{b}\). Whether a usuruation is in erery instence to be assmmed is another question, which camnot be entered into here; it mar, for the present, be sufficient to repeat that the superadied function of carpale \& may often be not the cause but the consequence of the degradation of carpale 5 .

Where earpale 5 is alsent in the terrestrial Mammalia, it has, so far as my experience goes, either disappared by atrophy, or become absorbed by the tuberosity of Metac. V, as in Man. Finally, therefore, since the lusion of carpale 5 with carpale 4 has never been observed in these, its necumence may be peculiar to the Cetacea.

\section*{Remahes on the Methtarsts And Tarsis of Lagomorphofs Rodentia.}
1. Inctuturselle I and Tursele 1.-Nianse states + that in adult Rabhits the os tarsale 1 becomes fused with the os Metatarsi 1 , and for this he refers to his text-figure 64 b. He continues as follows:-"In new-hom animals, however (fig. ( \(6 \mathrm{k} a\) ), the tibial prominence of the froximal extremity of Metat. 1 is independent, and consists of an os farsale and a lengthened distally-pointed bone, mpesenting a mament of the hallux, at the distal and of whieh there is inserted the tendon of the in. tibialis autiens. In reality, therefore, the os tarsale 1 of the Rablit is the o.t. .2 of Man, and the os Metatarsi I of the Rabbit represents the os tarsale 1, the hallux and os Metat. II of Mam." So far as the figs. Gif A, "horizontal section of right hathux of a 12-days-old Ramit," goes, this is correct, assmming that the two outline-figures of the tarsalia ( 1 and 2 ) are meant to show them in a cartilaginons condition. But the letteriug of fig. 64b, "right os Metat. I" (meaming Metat. II of comparative anatomists) of an adult

\footnotetext{
* ." . . muss daran festgehalten werlen, dass diw Ampassung an cine nene Function kneswegs das Typische der Gliedmassenform zu erkbaren rermag. Wo wir solelen Anpasoungen begegnen, hat wich der urspringliche Zustand nie granz verriseht. In der Flosse der Ralaenen ist das kilugethicrarmskelet klar zu erkemen, whenso wic bei den Cheloniern die schildkrotenextremitait. Hier bei den kualinauriern ist anch gar nichts anf Reptilien beziehbares am Flossenskelet vorhanden. Ton der schon bei \(\Delta\) mphithen vorhandencen hifferenzirug vou beiderlei diledmaassen neht ein blasser Schein! Es müsste also an der Gliedmansse cin Ruarkgang bis zu den ersten Aufiagen erfolgt und von dienen her cine selbstandige Iusbildung cingetreten seib, wem Beziehungen \%um Reptilieutyphs hier cimmal an der Giliedmaasse bestanden haben mügen. Jedenfalls gehoren diese Bildungen nicht in die lieihe der lieptiliengliedmanssen, sondern unter die Aufänge, wie sie denn gerade in dem sehon beregten Mangel des Differentwerdens ron Torder- und IIinterextremitit sogar unterhalb der his jetat bekannten lieptilien sich stellen. so hirgt sich in diesen Fragen ein interessantes Irshlem." (Vergl. Anat. der Wirbelthicre, p. swi.)

}

R bbit, from the nedial side, is erroneons. The process I, "place of the real ITallax," is the tulberosity of the Metat. IL; with this tuberosity neither the tarsale 1 nor the rudiment of the Metat. I come in contact, and therefore they cannot form it comection with it. The proximal process of Metat. I], mumbered \(\mathbf{1}\) (= place [Stefte] of the real os tarsale primum), represents instead the rodimentary MEetat. I (sce Pl. 38. figs. 5 and 6 I), which in youmg Lepus is distinct, but afterwards becomes fused with Detat. II. Tarsale 1 is visible in the young Rabbit in a cartilaginous condition *, but in this species and in a sylritugus from Bogotá in both of which I have been able to examine rarious stages, I have meither observed an ossification of it, nor a fusion with the rudimentary Metat. I, as assumed by Kranse and by Leehe. It gradually shrinks and apparently is absorbed \(\dagger\). It is quite possible that in some species a fusion may take place as a rule or exceptionally ; but I deny it to have been demonstrated in the Rabbit, in which it is said to be the rule. Professor Tlowes informs me that he too has searehed in vain for evidence of this.
2. Fusion of Tersale 2 with Jetutarsale II.-A fact hitherto not noticed in Lagomorpha is the fusion of tarsale 2, the mesoctuciform ( \(r_{2}\) of my figures) with Netat. II. This fusion takes place in Prolugus (Pl. 38. figs. 17, 27 ( \({ }^{\prime}\) ), in Letgomys
 the figured specimen of which is not adult, the fusion is not quite complete; in the older specimen at the Lesden Musem I saw it was complete. In a specimen of Syldilugus breciliensis from Lagoa Santa, the property of the Copenhagen Musem, tarsale 2 is fased in the right limb and distinet in the left; in an incomplete limb of the same species in the Royal College of Science, London, the fusion is complete.
3. Procuneiforme.-As in the case of the resalianum carpi (see pp. 501-3), my attention was arrested by an accessory hone in Prolayus surdus through a small tacet on the tibial side of the proximal termination of Motat. II, or rather of Metat. T, since, as shown before, this part is oceupied in the yomgh by the rudimentary Metat. I, which later on becomes fused with Metat. II (Yl. 38. fig. 17, pr; fig. 27 ", facet on the upper left side of Metat. 1I). This is the region which corresponds to the insertion of the muse. tib. posticus, and therefore the ossicle, indieated by the facet. is the so-called distal prehallux, or Banr's "klanenartiges Gebide." Tringe has denied the existrone of this ossicle in Lepus and Luyomys \(\ddagger\), but I have fonnd it in buth families, and, as we shall see later, it has been met with as a rare occurrence even in Lepus enropucus. In Letyomys it articulates (Pl. 38. figs. 15, 16, 26 pc) by a smaller facet with the navicular as well, and lies in the distal continuation of a much larger ossicle (fig. ali, ti), which articulates with the navicular and the astragalus. The latter is undoultedly Baurs and Leboucq's "tiliale" (the proximal ossicle of Ton Bardeleben's "pretiallux").

I find the smaller, distal, ossicle in the following Leporida, viz. in Sesolugus
* Šee Leche, in Bronns Klass. u. Ordn. d. Thierr. ri. r. シnt lief. pl. xcri. fig. 3 (1-5) ).
\(\dagger\) Jietterer (Comp.rend. et Mém. Soc. Biol. (20) i. p. Nit, l~! t) regards the ussicle, which I with others hold to be a rudimentary Metat. \(K\), as tirsale \(I\), denying all trace of the former". The presence of a cartilaginous tarsalo 1 in young Rabhits is easy of observation, but presumably it was not yet chondrified in the stages examined by lietterer.
\(\mp\) II. Winge, "Jordfundue or uulevende (inarere," E Museo Isundii, i. P. 1 \(\ddagger\)
SECON1) SERIES.-ZOOLOGI, VOL. VII.

Netscheri (Pl. 38. fig. 23, pc) ; in Oryctolagus crassicundutus (fig. 22, pe), where it scems on its way to undergo a synostosis with Metat. II; in Caprolugus lispides (fig. 21 , pe), where it has shifted its position completely to the rolar side of Metat. II ; in a specimen of Syltilayns brasitionsis, from the Copenhagen Museum; and lastly in the Wild Rabbit, where the ossicle is very small and situated volarl as in C. hispidus. I owe this specimen to Mr. Sherrin, Articulator in the Nat. Mist. Mus., who at my request dissected some labbits fect, in seareh of the ossicle in question.

In his carefnl researches "Ueber den Sängetier-Prehallux" *, 'Tomier met with this ossicle in one case only of all the Rabhits' and Ilares' feet examined, and great stress is laid on this isolated occurrence. "Die Lage dieses ïberzähligen Koöchelchens beweist mwiderleglich, dass es selbst homolog ist dem Knochen welcher bei vielen der bisher untersuchten Tiere der / 1-Medialseite gewenïber liegt. Da er an Hasenfiissen individuell auftritt und an jungen Kaninchen- und Hasenfüssen micht rorhanten ist, so ist es zweifellos, dass er cine secundäre Bildung ist, md darans ist mit Sicherheit zu schliessen, dass er anch bei den 'Tieren, wo er immer rorkommt, eine serandäre Bildung ist" \(\dagger\), And again: "Der muse. hallucis abductor-Knochen kommt endlich drittens zuweiken bei erwachsenen Vertretern solcher Thierarten vor, bei welehen der Knochen unter normalen Umständen weder im Alter noch während der Ontogenese rorhanden ist (Lepus timidus) \(\ddagger\); bei diesen Individuen ist er—dagegen wieht es keinen Widerspruchsecundar entstanden" \(\wp\). Therefore, as already stated in the first-quoted passige, he again asserts that the homologous bone in all other Mammals is equalty secondary.

Even if the presence of the ossicle in question, as believed by Tornier, were limited to exceptional cases in one species of Lepmes, the anthor's aryments would not be ralid. It is one of the characteristics of these rednced "accessory" bones to ossify very late (Thilenius); and its exceptional appearance in L . europects could, " priort, be interpreted quite as well in the sense of a disappearing element as in Torniers sense. But the presence of this bone as a constant element in Lagomyide and several Leporide totally changes the aspect of the question. In the more primitive forms of Lagomorpha, the ossicle seems always to be present and proclaims itself a redueed clement by its varying size and position. In those Leporida-of which L. cerropens is the prototype-which are the most spectalized for leaping, we most expect it to be of quite exceptional occurrence.

The ossiele has been observed in the "Hatre" likenise by Pfitzuer ", who ealls it the precenciforme. As to whether this and similar accessory bones are to be cousidered as "secondary" or "sesamoids," Pfitzner has shown the the way how to proceed ", viz. that we cannot hase our conclusions on the examination of a single specimen or a few species. The "prectueiforme" has been studied by P'fitzner especially
(i. Tomicr, " Leber den Sángetior-Prehallux. Ein dritter lecitrag zur lhylogenese des hangetierfusses." Arch. f. Naturgesch. 1891, pp. 115-20t.

Morph. Arb. (fochalbe) i. p. \(53: 3(18: 92)\); ir. p. \(3 \overline{3} t(1-1.0)\). Prof. l'fitzner has kindiy informed me that the species is L. ctroperns, Pall.
- L/. © . ; aud Murph. Irb. vi. 1. 394 (1596).
in the Camivora (where it had been seen by Ileckel); and of the Polecat alone he examined seventeen specimens. His conclusions are summed up in the following words:-"Skelet und Xasculatur variieren unabhängig ron einander, da findet kein Ineinandergreifen beider. Processe statt, höchstens, mud stets nur in beschrïnktem Maasse, ein gewisses Nebeneinanderherlaufen.... Muskeln und Muskelansätze und Skelet variieren ohne innere Forrelation, und deshall) ist es für die Deutung cines bestimmten Skeletstückes ganz irrelevant, ob ein bestimuter J[uskel sich daran ansetzt oder nicht, Das Precuneiforme bleibt das Pracmeiforme, ob sich M. tib. anticus oder M. tib. posticus ganz, theilweise, oder gar nicht daran ansetzt, und für die Deutmg eines Skeletstiicks oder selbst sciner Komponenten, also für die etwaige Frage, ob andere Skeletstücke durch Assimilation mit ihm rereinigt sind, bleibt es ganz gleichgiltig und ohne jede Beweiskraft, welcher Muskel am ihm inseriert. - Aber auch mit den Bändern steht es nicht anders; auch sie variieren nach Vorkommen und Ausbildung ohne Rücksicht anf dio Skeletstücke" ". And 'Thitenius: "Die Beziehmgen, welche die accessorisehen Elemente der chiropteryoialen Uirbelthiere zu MLuskeln, Sehnen oder Bändean besitzon, sind nicht primäre Erscheinugen, sondern secundär während der Ontogenese erworben " \(\dagger\).

When the "tibiale" is not a separate hone, as in many Rodents, it is considered to be part of the naricular, the "tuberositas naricularis medialis" (Baur, Leboneq, Emerer \({ }_{\text {中 }}\) ). It does not seem to me to preclude the assmmption of a medial tibiale, which would be a part or the whole of Emery's "paracentrale" \(\S\), the first element of the second ray ( 11,1 ). If then the tibiale marginale (or externum) is the first element of the first ray ( \(L, 1\) ), the suggestion lies not far of that, like the distal "prepollex," the distal "preehallux" (pracunciforme) is the sceond element ( \(I, 2\) ) of the same ray, but that it has generally been thinst out of the series.
t. "Acressary ossicles" urticuletiny with Metertursel \(I\).——n Pl. 38, fig. 9, [ have represented the enlarged fignre of a right Metat. T. from La Girive, of from the dorsal, \(b\) from the volar side. This is still another instance of a fossil metapodial, presenting umusual articular facets, for which, for a long time. I was unable to aceount, for want of material for comparison.

The ossicle is much larger than the Metat. \(Y\) of Proleyns anemgensis, which otherwise resembles it closely, exhibiting the same particulars as do the fifth metatarsals of Prolugus surdus and \(P\). sardus val. corsictuns. I must leave it undecided whether the figured metatarsal belongs to Titmomys Fontunnesi or to Lenyopsis cerus, which, judged from other parts of their skeletons, were both of about the same size.

On the rolar aspect \((b)\) is seen a large facet, starting from the proximal end and rmang obliquely in the direction of the tuberositas lateralis. In Leporide I find in the

\footnotetext{
* Morph. Arb. vi. p. \(39+\) (1-9(i).
† Inice. 下. ppe.it4, 5t5 (1895).
\(\ddagger\) C. Emery, "Beitr. z. EutwickInusseesch. u. Morph. d. Hand-u. Fussskelets der Marsupialier:" ('emon's

§ (. Emery, " Die fossilen lieste von Archeyisencus und bryops und ibre Bedentung für die Morphologie des Glicdmansenskelets," Inat. Anz. xiv. pp. 200, 207, figx. :3-7 (1-98).
}
corresponding part no facet, but instead, either a conver swelling of the region, or in some eases, on the contrary, a more or less rugose depression. In Lagomys (Ls. rufescens and L. meltmostomns) there is the facet in the same place, and articulating with it a comparatively large orbicular or triangular ossicle. I think it probable that, in those Leporide (Caprolagns hispidus, C. Netscheri, Syltilagus brasitiensis) where the corresponding regrion of the Metat. V is raised to a convex protuberance, the ossicle in question has become fused with the former bone.

A similar ossicle has been met with by Pfitzner in Carnivora, viz. in Ursus arctos and \(\cdot\) in Lution*. I find the same ossicle in Cercopithecidre, in Mus, and, among Lusectivora, in Esinuceus, Gymmura, Mryogule, Comlylure and Centetida (Limnogale, Oryzorycles, Microgale). In the latter, and in Myogale, it is enlarged transversely and extends also on to the base of Metat. IV.

Pfitzuer homologizes the ossicle in Carnivorat with a similar one on the fifth metacarpal of Primates (os hammi), and regards these and similar oecmrences in the third tarsal ray (os unci, in Felis) as carpalia (or tarsalia) which have become " abortive," and have been sceondarily displaced towards the volar side \(\$\). The question would then arise whether we have to cousider the ossicle of the Metat. I as pertaining to the fifth or to the fourth ray; for from its position-and the same remark applies to the "os hamuli "on the tibial side of the Metat. \(V\), and sometines articulating with Metat. IV also, it may belong to either. For the present the question camot be settled; but since both tarsal and carpal elements in question are of apparently widespreal ocemrence, we may hope to get hetter acquainted with them before long. In the marsupial Perameles obesuta, Metat. IV and Metat. V have each a sepame plantar bone, articulating with their proximal capitulum 中.

On the dorsal side of the tulerosity of Metat. V-on the left in tig. 9 "-is seen what appears to be a facet, partially extending to the volar side also. The same facet is present in looth species of Prolngus. It at once recalls to mind what occurs on the Metac. V of Prolugus and Lagomys, and some Leporidae, where carpale 5 (os vesalianmm carpi) articulates with the tuberosity.

A distinet os resalianum tarsi (Pfitzore) is a very rare oceurrence in Man, in whom it has been seen by Vesalins, Gruber, and Spronck §. Pfitaner never saw it free; when distinct-one case figured by Vesalins, two deseribed and figured by Gruber, one by Spronck-it is sitnated on the fibular side of the pes, "in the angle between the cuboid and Metat. V, articulating with both." An epiphysis which may oceur on the tuberosity

\footnotetext{
* Tageblat der 60. Vers. dentsch. Naturf. und derate in Wiesbaden, 1. 251 (1s90). .-Speaking of the Bear, the author states that the ossicle oceurs on the plantar base of Metacarpal \({ }^{\prime}\); from the context it would appear that. this is a misurint for Metatarsal V. at any rate, in Letrex it is present on both Metacarpal and Dletatarsal V, as stated by the same author.

\(\ddagger\) C. Emery, " Reitr. z. Entwickiung"gesch. n. Dhorph. d. Nand- w. Fussskeletts der Marsupialia" (Memon's 'Forschungreisen in Australicn,' Se., ii. p. 381, Taf. xxxp. figs. 45, 46 (1-97).

}
of the human fifth metatarsal is considered by Pfitzuer * as one of the terminal stages of its assimilation by the latter bone.

I find an epiphysis on the tuberosity of Metat. V in the Rodent genera Genychus and Ctenomys. The bone itself 1 have nerer seen independent, but, from what I have stated above as to the fossil metatarsal, there can hardly be a doult that an ossicle artieulates with the tuberosity. 'The cuboid of Prolergus, of which I lave a number of specimens, shows a facet-absent in Leporida-on the proximal fibular side; and this, together with the facet on the tuberosity of Metat. \(V\), susgents the presence in these Lagomyide of either one ossicle articulating distad with the Metat. V and proximad with the euhoid, or two ossicles, the proximal of the two articulatius with the cuboid, the distal with Metat. V ; both possibly articulating originally also with each other at their apposed surfuces. Considering the rather consideralle distance which must have oceurred between the two facets, the latter hypothesis-of two hones-seems the more probable.

The presupposed proximal owsicle wouk be the homologne of the "os peronenm" (Pfitzer) of Man中 and other Primates, which is the so-called sesmoid in the terminal tendon of the peroneus longus muscle. It has in Man, aceording to P'fitzner, a freguence of about \(8-9 \%\), and is sitnated on the postero-lateral end of the eminentia obliqua cuboidei. "Hier findet sich in den Fällen bester Anstidhung eine seharf abogesetzte Facette, der cine gleiehe auf dem Peroneum entepricht" \(\ddagger\). This os peroneum was seen by Danbenton in Mylobrtes: "Il y a de plus dans le gibhon un luitieme os placé an côté externe dutarse, à l'endroit où le calcancum touche an cuboirte" §. In the skeleton of a IHylobutes lar in the Natural History Museum, there is to be seen an ossicle articulating with the cuboid ; and it is of quite general occurrence among the Cercopithecida. Gillette mentions it in Monkers generally as artieulating with the cuboid \(\|\). Whether the ossicle mentioned by G. Fischer in the Tursius is a resalianum or a peronem I cannot decide for the present. He says: "Auch findet man in den Tursern noch cin überzähliges Beinchen, rund, linsenförmig, doch lainglich, welehes rigentlich auf dem letzten Mittelfusshochen aufsitzt, der sich immer mit seinem Kopfe weit nach hinten zieht" ". I see the "peroneum" in a minute ossicle in Limnoynle (an aquatic member of the Malagasy Centetida), adhering to the tendon of the mnsc. peronens longns, laterally from the cuboid, and I beliere the reason that it has not been more frequently seen in Mammals is that the musele is generally ont away in preparing the skeleton.
* Morph. Arb. vi. pp. \(262,263,474\) (1ヶ96)

\(\ddagger\) Ibid. vi. p. 451.

"Chez les singes, lous scisamoild du péronier latéral ust trìs-voluminenx. puisque, chez des individus de petite taille, nous l'arons trouvé an moins aussi gros que cur du ponce de lhomme, constant et ayant la forme d'nn troisquarts d’orme rúgulier: il possède une face véritahlement articulaire, nu pru convexe, et qui répond à une facette également encroutée de cartilage de la partie inféricure du cuboilde." (Journt. de l'Anat. ct de la Physiologie, riii. 1. \(533,1 \times \underset{\sim}{0}\).)
- Gotthelf Fiseher, 'Auatomic der Maki,' p. 154(1.50-t). This ossicle is not mentioned in liurmeister's 'Beitrige z. aïh. Kentuiss der Gattung Torsies' (1546).

The "peroneum" would then be homodrenamous with the uluare externum Thil. (ulnar part of Pfitzuer's triquetrom bipartitum), \(=\mathrm{V} 2\); and the vesalianum tarsi with the resaliamum carpi, \(=\) V 3, or tarsale \(\overline{5}\), the cuboid being tarsale 4 .

The cuboid of Mammalia is generally considered to be a componm of tarsale \(4+\) tinsale \(\overline{5}\); but where an os resalianm, or its traces on the tuberosity of Metat. V, are present such a supposition camot, however, be admitted. Emery found in embryos and pouch specimens of the Marsupial genera Didelphys, Epyprymmes, and Phascolterches separate tarsalia 1 and \(5^{*}\). For the former gemes at least he has demonstrated that tarsale 4 and tarsale 5 become fused in later stages. This instance of a compound Mammatian (onboid (tarsale 4 and 5 ) is the only one in the literatme which can be taken seriously ; but it is quite possible that in other Mammalia too the resalianum may be assimilated by the cuboid, instead of lyy Metat. Y, as in Man and some Rodentia.

\section*{Concludixg Rematers and Stggestions as to Classification.}

The oldest known lagomorphine genera, Titanomys, and Palcolaqus, have several important characters in common: still, the diffcrentiation into Lagomyide (Titanomys) and Leporidee (Puldeolugns) had already taken place. In the mumber of upper molans and in the shape and composition of the bony palatal bridge, Tiltanomys shows itself the precursor of the recent Lagomys, Palcolayus of the recent Lepmes; and it is therefore adrisable to retain the two groups as families, although they conmere back in time. Noreover, in other characters-absence of supmormital processes, pattem of the cheek-tecth-Puleoluyus approaches nearer the Lagomyidit than do the more recent Leporide. In the gradual transformation of their cheek-teeth, both groups, as has been amply demonstrated, run parallel from the Lower Miocene down to recent times. The Lagomyide, as at present known, start from a more primitive tope than the Leporidie, since in Titmomys the cheek-teeth have remmants of roots and the upper ones preserve their original pattern thronghout life; whereas in Palapolugns, so lar as I know, the check-teeth are already rootless, and in old age ther lose their original pattern, without, howerer, develonging the new one. Th the transformation of their tooth-pattern the Leporide eventually go a step beyond the point at which the Lagomyide stop, the cheek-teeth of Lepus being more completely metamorphosed than those of recent Leryomys. In this respect, as well as in the specialization of their limbs for swiftness, correlated with the greater perfection of the sense-organs-and, as a consequence, with corresponding moditications of the skullthe Leporide are to be considered the more specialized of the two; but there are several nembers of the Leporide which, with regard to the two last-mentioned sets of characters, and the complete or almost complete absence of the tail, preserve consideratble similarity to the Lagomyide. By the absence of the upper m .3 , and by some peculiarities of the cranium, pointed out loy Winge (perforation of the fossa pterygoidea-finsion of the

\footnotetext{
 \(375,3 \times 3\); figs. \(20,30,31,59(1857)\).
}
spongiose os trmpanicum with the petrosum），the Lagomyide are more modernized than the Leporidæ．

If we take for a guide the gradual metamorphosis of their upper cheek－tecth，the order of suceession in Lagomyidie is：Titanomys，Prolagns，Lagopisis，Lugomys．Lagomys is clearly the offspring of Lagopsis；but Lergopsis camot be descended from Prolugus，the latter haring lost the last lower molar（m．3），which is present in Latopsis（and Latyomys）． Lugopsis must have taken its origin from a form with upper eheek－tecth like or nearly like those of Protayus，but provided with a lower m．3，a hypothetical＂Prolagopsis＂ descended from Tittonomy／s or some closely related form with persistent lower m．3．In Iitenomys（T＇risenoriensis）there is already the beginning of the tendency to the loss of this tooth．Prolnyus equally descends from a Titemomys－like form，and has continued without much change from the Middle Miocene to the present era，since it still lingered in Corsica at the Neolithic period．

\section*{Titenomys}


Leporide．－Apart from attempts to separate the Rabbit as a genns from the rest of the Leporidx，which have not，however，met with common assent，the family has pretty generally been considered to be composed of one recent genus only，Lepus．In 1815，Blyth proposed a new genus Cteprolayus，for Pearson＇s Leppus hispiches．The appropriateness of this generic distinction has been contested by Hodgson and lyy Waterhonse．The former，omitting to take into consideration the remarkable configuration of the skull of the IIispid Hare，pointed out，that＂In the＇Timid and Red－tailed Hares the longr ears， the large eyes，the frame as well suited to extreme speed as the eyes and ears to effective rigilance，are certainly in remarkable contrast with the small eyes and ears，heary frame， and short equal lecgs of the Forest Hare：but all these distinctions，as well as those of domieile，become less and less tamgible in the Variable Hare，the liabbit，the Tolai and the Tapiti，in which moreover we have varionsly reproduced，even to the subordinate peculiarities of the Indian Forest ILare，such as its white flesh，its short tail，its sulbermean retreat and erceping adhesion thereto，so unlike the dashing earecr of the

\footnotetext{
＊E．Iblyth，＂Description of C＇aprolergus，a new Gemus of Leporine Mammalia：with two plates．＂Journ．As．Soc， lengal，xir．i．p1．ニトケージリ（1845）．
}
red-tailed and English species "*. Waterhouse's oljections are to the following effect:"Strongly marked . . as these distinctions are, if the Assam Hare he compared with the Common Hare, they are less so when that animal is compared with the Indian Hare (Lepus meficandatus), and much less so when it is compared with the Lepus brachynrus of Japan. This last-mentione? animal has the short ears and tail of the Lepus hispidus, and the same large molar and incisor teeth, combined with a powerfully-formed skull, but in this skull the noteh which sets free from the fore part of the supraorhital process is not ansent, as in Lepus hispidus: it agrees in having the pateh umusually loug, but differs from the skull of L. Wispitus (as it would appear from Mr. Blyth's figures) in laving the zygomatie arehes straight and parallel as in other Hares; the Assam species haring the zygoma somewhat arched outward. 'The peculiarities which I have pointed ont as distingrushing the lower jaw of the Lepus ruficuudutus from that of the L. timiadus are also formd in the lower jaw of \(L\). lispidus, but here the angular portion has a still greater transverse diameter" \(\dagger\). The result of these criticisms was the withdrawal of the genus Caprolagus by its author \(\$\).

For my part, I am unable to accept these opinions. Some of the remarks of the former witers are undoubtedly just, and two of the examples of other Leporine species, adduced ly ILodgson, as rescmbling the Mispid Hare, are more to the point than Waterhousc's comparisons. But the conclusions I infer from them are very different from those of these authors. The external eharacters and the conformation of the skull and limbs, in which the Hispid Hare is distinguished from L. cerropeus--taking this latter as the type of the genus Lepuss s. str.-are fery remarkable. The ciremmstance, which I shall more fully point out hercalter, that there are other Leporines approaching the Hispid, simply shows that the latter-apart from its specialization as the ouly true fossorial member of the family-does not stand alone, and that several other species equally deserve to be separated from the gemus Lepus.

The first attempt at a tabutar arranement of the species of Lopus, aceording to their affinities, was made ly Baird §, who arailed himself of the characters of the skull; limiting himself-with the exception of "Lepus cumicutus"-to North American species. The six sections into which the genus is divided show that this excellent olserver had on the whole a right conception of the aftinities of this group. Not all his sections, however, are of equal value; section B, comprising L. culfornicus and \(L\). cullotis, is in reality more closely related to A (L. timidus, L. glarialis, L. comericumes, I. compestris, \&c.) than to the other sections; and the same may be said with recrad to E (L. Trowbridyei and L. Audubonii), which, as a matter of fact, is in closer relation with D (L. sylveticus and allies) than with the rest.

With such a grood example to follow, a suceessor, taking up the whole of the known Leporidae, might have been enabled to make a further step torward. This is what J. E.

\footnotetext{
* 1i. H. IIodgson, "On the Hispid Hare of the Sull Forest" (Journ. As. Soc. Bengal, xvi. i. p. 5rt (1)-t).
\(t\) (i. R. Waterhouse, 'A Natural History of the Mammalia,' ii. p. S0 (1sty).
\(\ddagger\) E. Mlyth, Catal. Manm. in Mus, Asiat. Soc. Calcutta, p. \(1: 33\) (1scia).
§ Spencer F. Baird, ' Mammals of North America, Mp. \(574,550(1859)\).
}

Gray attempted to do w. From the title of the article, "Notes on the Skulls of Hares (Leporidee) and Picas (Lasomyidxe) in the British Musemm," the actnal contents could not be guessed, for the work is an attempt at a complete classifieation of the Lagomorpha, in which sereral characters bosides eranial are made use of. The characters assigned to the family Leporide are in part either erroncous (characteristics of the molars), or they do not hold good for all the minor divisions, and are consequently partly in contradiction with the subsequent cha? eteristics of the sections. This family is divided first of all into two sections, one reserved for Blyth's Cuprotugns, the other for the rest of the Leporida. This latter is again subdivided into two groups:-A. Hares, B. Rabbits, the latter containing the Rabbit alone, raised to generic rank (Cuniculus). In group \(A\) are given generic names to some of Baird's divisions. The latter's D (cx L. syluticus) becomes Sylvilugus, his F (L. "quaticus, L. pulustris) Ifydrolagus; while a genus Topeti is created for the Brazilian Hare, and Eulagos for "L. mediteranens" and "L. Judea." In the subdivisions of this \(A\) group (Hares), great stress is laid upon a comparatively unimportant cranial character, which had cautionsly been made use of lyy Baird. Thus we get two subdivisions: I. Postorbital process more or less united with the skull (Hydrolagus, Sylvilagus, Euluyos). JI. Postorbital process separate from the skull (Lepus, Timpeli).

The species of the genus "Lepus" are classed according to geographical distribution, and thes there are unaroidably thrown tugether rery heterogeneous forms in the African, Asiatic, and American members. Among the latter are L. Audubonii and L. Trowbridgei, which are thus widely separated from Sylvilugus, containing their closest allies.

The fore-mentioned paper was wisely ignored by J. A. Allen, in his Analysis of the species and rarictics of North American Leporidee t. Allen on the whole follows Baird, with some improvements in detail, but with one step backward, by widely separating the Cullotis group from \(L\). timidus and its allies.

Some of Gray's generic names have since been used as sulggenera, e.g. by Mearns, with whose "Analysis of three Subgenera of Lepus" 家, containing some valuable information, I propose to deal elsewhere.

A new genus of Leporide, Romerolagus. from Mount Popocatepetl (3350 metres), was described some years ago by Hart Merriam §. The author's views as to its systematic position are summed up in the following words :-" The skull, singularly enough, does not show the departure from Lepus that one would expect from a study of the other bones. It agrecs in the main with skulls of the American Cottontails (subgenus Sylvilagus), but differs in the postorbital processes, which are small, divergent posteriorly, and altogether wanting anteriorly, and in the jugal, which is greatly elongated posteriorly. The interparietal is distinct, and in old age becomes ankylosed with the supraoceipital. The thoroughly leporine character of the skull shows that the animal can hardly be regarded as ancestral to Lepus, as might have been

\footnotetext{
* Ann. \& Mag. N̈t. Hist. xx. 3, p. 219 (1867).
\(\dagger\) 'Monographs of North American Rodentia.—1I. Lejoridx,' by J. A. Allen, p. 283 (1876).
\(\ddagger\) Proc. U. S. Nat. Mus. xviii. p. 551 (1896).
§ Proc. Biol. Soc. of Washington, x. p. 169-17t (1E96).
}

SECOND SERIES.-ZOOLOGY, VOL. VII.
inferred from its short ears, short hind legs, and varions skeletal characters, but that it is a specialized offshoot from the genus Lepus itself" *.

My own views as to the significance of the characters of Romerolegus are abont the same as those with regard to Caprolagus. They are certainly of generic valne, by comparison with those generally assigned to the genus Lepus. But it does not follow that Romerolages can stand as a separate genus, or, to put it in a more gencral way, that it occupies an isolated position compared with other Leporidæ. I feel sure that if the same care had been bestowed on the examination of the skeletons of some other Leporidæ near at hand, \(e . g\). the aquatic Hares 中, Hart Merriam would have arrived at the same conclusion as I have. It will probably be possible to show hereafter that Romerolugus is specialized in some respects, as might be anticipated from its habitat. The remarkable shortness of the ears is presumably the combined result of inheritance and speciatization. The absence of the tail is certainly an acquired chanacter, as it is in Lagomys. The complete clavicle can scarecly be regarded in the same light; but, although I know of no other member of the Leporide having a " complete" clavicle, Romerolagus does not, in this respeet either, occupy such an isolated position as the anthor seems to think. That the skull is "thoroughly leporine " I cannot admit ; there are sereral cranial characters, as will be shown, which are unusual in most Leporidae, but which Romerolagus shares with Palcolagus, with some recent Leporidx, and with the Lagomyide, and which may he regarded as ancestral.

The whole of recent Leporidice may be divided into two groups, probably of higher than generic dignity, which might conveniently be called: A. Caprolayns group, and 13. Lepus gromp.
A. Caprolagus Groni: :-
1. Caproluyns: C. sivalensis, Maj.; C. raldarnensis (Weith.); C. hispidus (Pears.) (type.)
2. Nesolayas (nom. nov.) : N. Nelscheri (Schleg. \& Jent.).
3. Oryctolugus: O. cuniculus (Limn.) ; O. crussicaudatus (Gcoffir.).
4. Sylcilerfus, comprising in this term :-
a. Limnolagus (S. palustris, aqualicus, \&o.).
b. Romeroleyus (S. Telsoni, Merr.).
c. Tapeli (S. brasiliensis, \&c.).
d. Sylvilagus (S. sylvatieus, ©ee.)

The question whether \(1-4\) are to be considered as genera or subgenera is for the present quite immaterial. Sylvilagus s. str. is the least primitive of this group, and Oryctotagus stands somewhat apart.
B. Lepus Group.-This group contains the one genus Lepus s. str., including all the species not contained in group A.

\footnotetext{
* Op. cit. p. 172.
† This remark refers also to the limbs, although I do not know them from either.
}

The Caprolagus group ( A ) differs from the Lepus group by the following characters, part of which, as said above, it shares with Pelceolegus and with the Lagomyidac:-

Lesser specialization for speed, and in comrelation with this, lesser derelopment of organs of sense (sight, smell, hearing). Fore and hind feet comparatively short and subequal. Ears short. Eyes smaller. Tail very short or missing.

Cranium, depressed above, anterionly and posteriorly pry little bent downward. Upper contour of frontals and posterior part of nasals olmost horizontal (exc. Oryctolagus). Inferior border of orbit-formed ly malar bone-shorter than in the Lepus group : sinus on the lateral face of malar not advaneing so far forward (exc. in Oryctoletgus). Upper border of zygoma bent inward, inferior border arched outward (exc. in Oryctolagus). Postcrior appendix of zygoma elongate and, in correlation, mandibular condyloid process elongate also (exe. in Oryctolagus crerssiccumetus).

Infraorbital foramen lauger than in Lepus and its immediate neighbomhood almost devoid of reticulation. The hearier skull in the A group is in erident correlation with the different mode of locomotion. The following cranial characters of \(A\) are apparently in correlation with the less developed organ of smell :-Horizontal portion of os palatinum comparatively well developed; interpterygoid fossa and choane comparatively small. Foramina incisiva comparatively barrow and short. Anterior part of nasals less inflated than in Lepus. In correspondence with the smallep eyes, the orbits are comparatively small, and the orbital processes more or less reduced.

In conchsion, I wish to express my rery special obligations to Prof. Howes for loan of material, raluahle snggestions, and the pains he has taken in connection with this memoir.

\section*{EXPLANATION OF THE PLATES.}

\section*{Plate 36.}

Fig. 1. Cuprolagus (Oryctolayus) cuniculus (Limu.), jur. Rightmaxillary ; d. 3-m. 2.
Fig. 2. Plesiadapis Danbrei, Lem. Right upper molar. Enlarged copy from Bull. Soc. Géol. France, 3. xix. (1891) pl. x. fig. 62 u .

Fig. 3. Pelycodus helveticus, Rüt. Right upper molar. Enlarged copy from Abh. Schweiz. Pal. Ges. xy. pl. fig. 19 a (1888).
Fig. 4. I'rolagus surdus (Wagn.). Left maxilla with deciduons tecth (d. 3-(l. 1) and first molar. Monte San Giovami (Sardinia). Br. Mus. (․ D. No. M346t.
Fig. 5. Caprolagus (Oryctolagus) cuniculus (Limn.) ; slightly older than fig. 1. Right maxilla; d. 3m. \(\xlongequal[2]{ }\); alveolus of m. 3 .

Fig. 6. Titanomys Fontannesi (Dep.). Secoud (last) right upper molar (m. 2), almost disused. Middle Miocene. La Grive-Saint-Alban (Isère), as all the other specimens of this species *.
Fig. 7. Titanomys Fontanuesi (Dep.). First right upper molar (m. 1).
Fig. 8. Titanomys Fontamesi (Dep.). Posterior right uper premolar (p. 1). Br. Mus. G. D. No. 5268
Fig. 9 Titanomys Fontamesi (Dcp.) ? Second right upper premolar (p. I)?*
Fig. 10. Prolagus aningensis (Kön.). The three left upper premolars (p.3-p.1) of young specimen. Middle Miocenc. La Grive-Saint-Alban, as all the other specimens of this species. Br. Mus. G. D. No. 5234.

\footnotetext{
* The figures marked thus are from specimens in the possession of the author.
}

Fig． 11 Prolugus sardus（Wagn．）．Posterior right upper premolar（p．1），from a young sjeeimen． Monte San Giovanni（Sardinia）．Br．Mus．G．D．No．M3461．
Fig．I2．Titunomys Fontamesi（Dep．）．First left upper molar（m．I），slightly worn．
Fig．13．Titanomys Fontunnesi（Dep．）．First left upper molar（m．1），slightly worn．
Fig．14．Titcnomys Foutumesi（Dep．）．Right upper，probahly deciduons，molar ；mueh worn＊．
Fig．15．Titanomys Fontannesi（Dep．）．Posterior right upper premolar（p．I）＊．
Fig．16．Prolayps surdus（Wagn．）．Fragment of riglit maxillary ramus，with posterior premolar（p．I）， and the two true molars（m．1，m．2）．Nonte San Ciovami．Br．Mus．（i．D．No．M3459．
Fig．I7．Cunrolugus（Oryctolagus）cuniculus（Linn．）．Young individual，slighty older than fig．5．The two posterior premolars（p．2，1．I）and the two anterior molars（m．I，w．2）of the right side．
Fig．18．Titunomys visenoviensis，Il．r．Mey．Upper molar，much worn．Bravarl Collection．Lower Miocene，Allier．Br．Mus．G．D．No．3IOD4－10t．
Fig．19．Titmomys risenoriensis，ll．v．Jey．The two posterior premolars（1．2，p．I），from a fragment of the right maxillary．Lower Miocene of WFeisenau（Germany）．Br．Mus．G．D．No．2If95．
Fig．20．Cuprolagus（Sylrilayus）brasiliensis（Lim．）．Right upper posterior decidnous molar（d．I），from a skull in the Br．Mus．Z．D．No．58．1．15．1．
Fig．：31．Prolayus eningensis（Kön．）．Complete scrics of the right upper ehcek teeth（p．3－m 2）＊．
Fig．22．Leputs timichus，Lim．（L．variabilis，Pall．）．Light upper cheek－tecth of young individual ；the two posterior deciduons molars hase been removed，in order to show the overlying premolars （p．只，p．lj．Treland．W．E．de Winton，Eヶ¢．
Pig．23．Titunomys Fontamesi（1）ep．）．Left upper jaw，showing the empty alveoli of the five cheek－ tecth． \(4 \times 1\) ．
Fig．2f．Prolugus sarchus（Wagn．）．Complete series of the right upper cheek－tecth，or（p．B－m．2）． Ossiferons breceia of Monte San Giovami（Surdinia）＊．
Fig．歌．Lepus europeus，Pall．Unworn right upper median premolar（p．ir）of young individual． From a skull in the Br．Mns．Z．D．No． \(5: 37\).
Fig．26．Lepus timidus，Linn．Posterior right upper decidnous molar（（ 1.1 ），removed Prom the jaw fig．a2．
Fig．2\％．Caprolagus hispidus（Pears．）．Median right upper jremolar（נ．：2），of young individual in the Br．Mlus．Z．D．
Fig．28．Lepus sp．Light upper deeiduons molars（d．3－d．1）．China．Br．Nus．Z．D．
Eig．29．Proluyus amingensis（Kön．）．Right upper decidnous molar（cither d．I or d．2）＊．
Hig．30．Layopsis verus（ltens．）．Right upper deciduous molar（either（l．1 or（1．2）．Middle Miocene of La Grive－Saint－Alban＊．
Fig．31．Lagopsis verus（Hens．）．Mediau right upper premolar（p．ar）．La Grive－Saint－Alban．Br． Mus．（G．D．
Fig．32．Layapsis rerus（lIens．）．Left upper molar．La Grive－Sant－Athan．Br．Mus．Gr．D．
Fig．33．Caprolugus hispidus（Pears．）．Complete serics of the right upper check－tecth．Adult．Trom a skull in the Br．Mus．Z．D．
t＇ig． 3 f．Lepus nigrisollis，l．Cus．Posterior right upper premolar（p．3）．Br．Mus．Z．D．No．81．4．29．7．
Fig．35．Titenomys Fontamesi（Dep．）．Left upper deciduons molar（cither d．1 or d．2）＊．
Fig．36．Pakeolagus Haydeni，Leid．Fragment of right maxilhary ramus，showing the empty alveolus of the median premolar（p．ㄱ），and the three following eheck－teeth（p．1，m．I，m． 2 ）．131． Mus．G．D．No． 115727.

\section*{Plate 37.}

Hig．1．Titanomys Fontannesi（Dep．）．Isolated lower anterior premolar（p．D），nuworn．Nliddle Niocene of La Grive－Saint－Alban，like all the other specimens of this speeies＊．
＂ig．2．Titanomys Fontumesi（Dep．）．Another isolated specimen of the same tooth，slightly woru＊．

Fig. 3. Titunomys Fontumesi (Dep.). A third isolated specimen of the same, slightly more worn by attrition than the former *.
Fig. 4. Titanomys Fontannesi (Dep.). A fourth isolated specimen of the same, much worn *.
Fig. 5. Prolagus sardus (Wagn.), var. corsicanas. The two infurior decithous molars (d. 2, d. I) from a left mandibular ramms. The first true molar ( \(\mathrm{m}, \mathrm{l}\) ) of the specimen, not figured, shows a vestige of the terminal cusp (" \(t\) " \(=\) hypoconulid).
Fig. (i. Prolayus aninuensis (Kön.). Left mandibular raums of young individual, showing the two deciduous ( \(\mathrm{d} .2, \mathrm{~d} . \mathrm{I}\) ) and the two trne molars ( \(\mathrm{m} .1, \mathrm{~m}, \stackrel{\otimes}{2}\) ). La Grive-Saint-Allan. Br. Mus. G. D. No. M5: 36.
Fig. 7. Titumomys: Fontannesi (Depr.). Complete series of the lower check-tecth (p. 2-11. 3) in a left mandibular ramus. Adult. Be. Mus. G. D. No. 5.267 a
Fig. 8. Caprolagus (Orymtolugus) cunculus (Limı.). The two lower premolars (p, 2, p. I), in a right mandibular ramens of an immature speeimen. Herefordshire. W. E. de Winton, Esq.
Fig. 9. Proluyus reninyensis (Kön). Complete serics of inferior cheek-teeth (p. \(\because=\)-m, Q), left side. Adult*.
Fig. 10. Titanomys Fontannesi (1)ep.). l'osterior premolar (p. I) and antcrior trne molars (m, 1, m, 2) in a left mambibular ramus of an immatnre specimen. p. 1, being still in the socket, has not yet come into attrition. Br. Mus. G. D. No. \(5: 07\) b.
Fig. Il u. Titanom!s wisenociensis, H. v. Mey. Isolated upper posterion premolar (p. 1), or anterior mokar (m. I?, right side. Lower Miocene of TVeisenan. Br, Mus. G. 1). No. FinIf c.
Fig. 11 b. Titanomys riscnociensis, II. v. Mey. Probably posterior premolar (p. 1) or anterior molar (m. 1). Lelt side. Lower Miocene of Weisenan. Br. Mans. G. D. No. Felf d.

Fig. 12. Prolugus arningensis (Kön.). Anterior prenolar ( \(\beta\). : 丷天) from a left mandibular ramus.
Fig. 13. Caprolays Lacosti (Pomel). Anterior prenolar (p. D) from a left mandibular ramos. Upper Pliocenc of Pervice (France). Br. Mns. G. D. No. argis.
frig. 14. Luyopsis rems (IIens.). The two posterior true molars (m. 2, m. 3) from a right mandibular ramus. La Grive-Saint-Alban. Br. Mus. G. D. No. 5iz6\%.
Fig. I5. Titunomys Fontumesi (Dep.). Upper view of left mandibular ramis, cxhibiting the empty alveoli of the five cheek-tecth \(*\).
Fig. I6. Titanomys Fontunest (l)epr.). Posterior premolar ( \(p\), I) and the two atuterion true molars (m. I , m, 2) in a right mandbular ramus. Empty alveoli of p. 2am m, 3. Br. Mus. G. D. No. 115267 c.
Fig. 17. Cuprolayus (Nesotuyus) Netscheri (Sehleg. \& Jent.). Posterior mper premolar ( \(p\). 1), right side, from the sknll in the Br. Mns. Z. D. No. 92.J.De.I. Sumatra.
Fig. 18. Cuprolnyus sicalensis, Maj. The two inferior premolars (p.2, p, 1), from a fragment of the left manlibnlar ramus. Pliocene, Siwalik Hills, India. Cautley Coll. Br. Mns. G. D. No. I6a:2. (By an inadvertence of the artist, the anterior side of the teeth is turned to the right-their outer side being directed upwards in the phate-instead of to the left, as in all the other figures of mandibes and teeth of the left side.)
Fig. 19. Caprolayus (Romeroluyns) Nelsoni (Mcrr.). Anterior premolar (p. D), from a right mandibular ramms. Mount Popocatepetl (Mexico). Br. Mas. Z. D.
Fig. \(20 a, b\). Caproluyus (Sylvilayus) pulustris (Bachm.). Lower anterior premolars (p. ä), right ( \(a\) ) and left ( \(b\) ), from a specimen in the Br. Mus, Z. D.
Hig. 21. Titanomys Fontanuesi (Dep.). The posterior premolar (p.1) and the two anterior true molars (m. 1, m. ?) in a fragment of the right mandibnlar ramms.

Hig. 29. Caprolayus hispidus (Pears.). The two premolars (p. 2, p. 1) from the right mandibular ramus of an immature specimen in the Br. Mus. Z. D.
Fig. 23. Cuproluyus hispillus (Pears.). Complete series of lower cheek-tceth (p. 2-m. 3) from a right mandibular ramis of an adult speeimen in the Br. Mus. Z. D.

Fig. 24. Titumomys visenoriensis, H. v. Mey. The two anterior true molars (m. 1, m. 2) from a fragment of the left mandibular ramus. Brarard Coll. Lower Miocene of Allier (France). Br. Mus. G. D. Ňo. 31095.
Fig. 25. Tittuomys visenoviensis, H. v. Mey. The two premolars ( \(p, 2, p, 1\) ), from a fragment of the right mandibular ramus. Lower Miocene of Allier. Br. Mus. G. D. No. 31096.
Fig. ㄹ. Lagopsis rerns (llens.). The four anterior cheek-teeth (p. , p. 1, m. I, m. 2) and the empty alveolus of the last (m.3), in a left mandibular ramms. La Grive-Saint-Allan *.

\section*{Plate 38.}

Fig. I. Cuprolayus (Sybriluyus), sp., jun., from Bogotá. Iight manus, antcrior or upper surface view. Nat. size. \(r\)-vesalianum (carpale \(V\) ); \(h\)-lamatum (earpale IV). Nat. size.
Fig. 2. The same. External (ulnar) vicw. Nat. size.
Fig. 3. Caprolayus (Oryctulagus) crassicaulutus (1s. Gcoffr.). Br. Mas. Z. D. No. 9G.6.G.1. Left manus, uluar view. Nat. size.
Fig. t. Lagomys rujescens, Gray. Br. Mus. Z. D. Right manus, anterior view. \(2 \times 1\).
Fig. 5. Canrolagus (Oryctolayus) cmiculns (Limu.), juv. Right tarsus, uhar view. Nat. size.
Fig. 6. Cuprolayns (Sylvilugus) brasiliensis (Linn.), jus. Koy. Coll, Sc., London. Right tarsus, ulnar view. Nat. size.
Fig. 7. ('uproluyns (Sylcilugus), sp. jus. Bogotí. Right tarsus, ulnar view. Nat, size.
Fig. 8. Capmolayns (šytulayns) brasitiensis (Limu.), juv. Roy. Coll. Sc., London. Right antebraehimm and manus. \(a\), anterior, \(b\), posterior or volar view. Nat. size.
Fig. 9. Layopsis verns (Ilens.), or Titanomys Fontannesi (Dep.). Middle Miocene, La Grive-Saint-Alban. Br. Ilus. G. D. No. Mast. Right metatasus V. a, anterior; b, posterior view. \(2 \times 1\).
Fig. IO. Lagopsis verus (Ilens.), or Titamomys Fontamnesi (Dep.). Niddle Miocene, La Grive-Saint-Alban. Br. Mus. G. D. M5273. Left nlna. a, anterior; b, posterior view. Nat. size.
Fig. 1I. Prolagns sardus (Wagn.). Left nlna. 1 , anterior; b, posterior view. Nat. size. Pleistocene breccia, Monte San Giovami (Sarlinia). Br. Mus. G. D. 113171.
Fig. 12. Prolagus sardus (Wagn.). Right radius. \(a\), anterior; \(b\), external (ulnar); \(r\), internal (radial); d, postcrior view. Nat. sizc. Pleistocene breceia, Monte San Giovanni (Sardinia). Br, Mus. G. D. M3 77 I.

Fig. I3. Prolayns surtus (Wagn.). Left metatarsus II, from behind. \(3 \times \mathrm{I}\). Pleistocene breceia, Monte San Giovanni (Sardinia). Br. Mus. G. D.
Fig. 14. Layomys rufescens, Gray. Lefi metatarsus II, external (fibular) view. \(3 \times\) I. Br. Mns, Z, D, No. 74.11.21.17.
Fig. 15. The same. Posterior view. \(3 \times \mathrm{I}\).
Fig. I6. The same. Anterior view. \(3 \times 1\),
Fig. 17. Prolayus aningensis (Kön.). Left metatarsus II, anterior view. \(3 \times 1\). Middle Miocene, La Grive-Saint-Alban. Br. Mus. G. D. No. M5:24.
Fig. 18. The same. External (fibular) view.
Fig. 19. Prolayus sardus (Wagn.). Right metacarpal V', from the outer (ulnar) side, to show the facet for the os resaliannm (earpale \(\mathrm{V}^{\top}\) ). \(5 \times 1\). Pleistocene breceia, Monte San Gioranni (Sardinia). Br. Mus. No. G. D. No. M347l.
Fig. 20. Layomys rufescens, Gray jun. Right antebrachinm. u, fiont view ; b, external (nlnar) ; \(c\), internal (radial) view. \(2 \times 1\). Br, Mus. Z, D.
Fig. 21. Layomys rufescens, ad. Riglit radius. \(a\), internal (radial); b, front view. \(2 \times 1\). Khorassan. Col. Yate.
Fig. 22. Caprolugus (Oryctolayes) crassicaudatus (Is. Geoffr.). Left tarsus and metatarsus; internal (tibial) view. Nat. size. From skel. Br. Mus. Z. D. No. 96.6.6.1.

Fig. 23. Caprolagus (Nesolagns) Netscheri (Schleg. \& Jent.). Right tarsus and metatarsus; internal (tibial) view. Nat. size. From skel. Br. Mus. Z. D. \(\dagger\)
lig. 24. Caprolagus (Caprolagns) hispidus (Pears.). Right tarsus and metatarsus, internal (tibial) view. Nat. size. Br. Mus. Z. D.
Fig. 25. Lepus timithes, Limn. (L. curinbilis, Pall.). Right tarsus and metatarsus, internal (tibial) view. Nat. size. lreland. Br. Mus. Z. D. No. 76.4.10.2.
Fig. 26. Ln!gomys rufescens, Gray. Right tarsus and metatarsus, internal (tibial view). \(2 \times 1\).
Fig. 2\%. Prolugus surfus (Wagn.), var. corsicamus. Left metatarsus IT. a, anterior; b, internal; \(c\), posterior ; d, external view. Nat. size. Pleistocenc breccia, Toga nr. Bastia (Corsica). Br. Mus. G. No. D. M 3486.
ITig. 28. Caprolugus (Nesolagus) Netscheri (Schleg. \& Jent.). Left antebrachinm. ", front view; b, external (ulnar) ; \(c\), interual (radial) ; l, postcrior view. Nat. size. Sumatra. Br. Mus. Z. S. Sumatra. Br. Mus. Z. D.
Fig. 29. Layomys rufescens, Gray. Right mlna. a, external (ulnar) view (almost posterior in adult Leporidx) ; \(b\), posterior view (almost internal in adult Leporidx) ; \(c\), front view (almost external in adult Leporide). \(2 \times 1\). Khorassan. Col. Yate.
Fig. 30. Caprolayus (Oryctoltryus) cuniculus (Linn.). Left antebrachium. a, front; b, external (ulnar); \(c\), intermal (radial) ; \(d\), posterior view. Nat. size. Herefordshire.

\section*{Plate 39}

Tig. 1. Titanomys Fontanesi (Dep.). m. 1, sup. dext. Anterior view. \(3 \times 1\). Middle Miocene. La Grive-Saint-Alban *.
Fig. 2. Titumomys Fontamesi (Dep.). m. 2, sup. dext. \(u\), anterior ; b, cxternal view. \(3 \times 1\). La Grive-Saint-Albau *.
Fig. 3. Sciuropterus fuscocopiltus, Blyth. m. ㄱ, sup. dext. Anterior vicw. \(4 \times 1\). Br. Mus. Z. D. No. 5?.5.9.19.
Fig. 4. Titanomys Fontennesi (Dep.). Upper deeidnons molar, much worn. Anterior view. \(3 \times 1\). Tooth figured Pl. 36. fig. 14.
Fig. 5. Titanomys risenoriensis, II. v. Mey. 1. ., sup. sin. a, posterior; b, lower vicw. \& 4 . Lower Mioeene, Weisenau. Br. Mus. G. D. No. Mzel\%.
Fig. 6. Titanomys Fontamesi (Dep.). Riglit lower molar. \(a\), anterior; \(b\), inner; \(c\), onter view. \(2 \frac{1}{2} \times 1\). La Grive-Saint-Alban \(\%\).
Fig. \%. Caprolagus (Oryctolayus) cumiculus (Linn.), juv. m. 1, sup. sin., posterior view. \(3 \times 1\).
Fig. 8. Caprolagus (Oryctolagus) cuniculus (Linn.), juv. m. 1, sup. dext. Anterior view. \(5 \times 1\). Speeimen figured Pl. 36. fig. 1.
Fig. 9. Caprolagus (Oryctolayus) cuniculus (Limn.), juv. dee. 1, sup. dext. \(a\), anterior ; b, suter view. \(5 \times 1\). Specimen figured Pl. 36. fig. 1.
Fig. 10. Pteromys melanotis, Gray. m. 2, sup. dext. Anterior view. \(3 \times 1\). Br. Mus. Z. D. No. 48.8.15.2.
Fig. 11. Titanomys visenoviensis, H. v. Mey. Left lower molar. a, outer; \(b\), inner ; \(c\), autcrior view. \(2 \frac{1}{2} \times 1\) Br. Mus. G. D. No. 21495.
Fig. 12. Titanomys Fontannesi (Dep.)? p. 2 sup. dext. (?) Auterior view. \(4 \times 1\). La Grive-SaintAlban. Speeimen figured Pl. 36. fig. 9. After renewed examination, the generie affinities of this tooth seem very doubtful.
\(\dagger p c\). of this fig. to be read tegether ( \(=p c\). precuneiform).

Fig. 13. Titanomys Fontamesi (Dep.). m. 1 sup. sin. Anterior view. \(3 \times 1\). La Grive-Saint-Alban. Specimen figured Pl. 36. fig. 12.
Fig. 14. Titunomys risenoviensis, H. v. Mcy. m. sup. dext. Anterior vicw. \(3 \times 1\). Speeimen figured Pl. 36. fig. 18.
Fig. 15. Sciuropterus xanthipes (Milne-Edw.). m. 2, sup. dext. Anterior view. \(3 \times 1\). Br. Mus. Z. D. No. 95.7.5.1.
Fig. 16. Tiftanomys visenoviensis, II. v. Mey. m. 9 sup. dext. Lower view. \(10 \times 1\). Weisenau. Br. Mus. G. D. No. Mi~2l.
Fig. 17. Caprolatus (Sylrilagus) brasiliensis (Linn.), jun. Sternmm. Front vicw. Nat. size. Royal College of Science, Loudon.
Fig. 18. Caproluyus (Nesolagus) Netscheri (Selleg. \& Jent.). Stermum. Front riew. Nat. sizc. Br. Mus. Z. D.
Fig. 19. Titanomys Fontannesi (Dep.). 1. 1 sup. dext. Intcrior view. \(3 \times 1\). Specimen figured Pl. 36. fig. 8.
Fig. 20. Pteromys mitilus, Desm. Germ of m. 2, sup. dext. Anterior vicw. \(3 \times 1\).
Fig. 21. Titarnomys Fontamesi (Dep.). dec. sup. siu. Autcrior view. \(3 \times 1\). Specimen figured Pl. 36. fig. 35.
Fig. 22. Layopsis rerus (Hens.). dec. sup. dext. Anterior view. \(4 \times 1\). Speemen figured Pl. 36. fig. 30.
Fig. 23. Prolagns aningensis (Kün.). dee. smp. dext. Anterior view. \(7 \times 1\). La Grive-Saint-Alban. Speemen figured Pl. 36. fig. "?9.
Fig. 24. Prolagus serdns (Wagu.), var. corsicamns. Dtctatarsus Il. l'leistocenc breccia of Toga, near Bastia (Corsica). \(3 \times 1\).
Fig. 25. Titunomys Fumtannesi (Dep.). Left mandibnlar ramus. a, imer; \(b\), outer view. Nat. size. La Grive-Saint-Alban *.
Fig. 26. Prolayus neminyensis (Kön.). dec. '2 int.. \(4 \times 1\). La Grive-Saint-Alban*.
Fig. 27. Prolagus sardus (Wagn.), var. corsircmus. Right mandibular ramus. a, imer; b, outer view. Nat. size. I'leistoeenc breccia, Toga (Corsica) *.
Fig. 28. Caprolayns (Nesolagus) Netscheri (Sehleg. \& Jent.). Right mandibular ramus, outer view. Nat. size. Br. Mus. Z. D. No. 92.5.24.l.
Fig. 29. Titanomys Fontamesi (Dep.). Posterior fragment of riglit mandibular ramus. a, outer ; b, inner view. Nat. size. La Grive-Saint-Alban*.
Fig. 30. Lagopsis reves (Hens.). Right mandibular ramms. a, outer; b, inner view. Nat. size. La Grive-Saint-Allan *.
Fig. 31. Titanomys Fontannesi (Dep.). Left mandibular ramus. a, onter; b, inner vicw, Nat. size. La Grive-Saint-Alban *.
Fig. 32. Caprolngus (Caprolagns) hispidus (Pears.). Palatal vicw of skull. Nat. size. Br. Mus. Z. D. No. 48.9.12.11. \(m=\) maxillary, \(p=\) palatinum.

Fig. 33. Caprolagus (Syhilagus) Nelsoni (Merr.) [Romerolagus Nelsoni, Mcrr.]. Palatal view of skull. Nat. size. Popocatepetl, Mexico. Br. Mus. Z. D. No. 97.6.1.5.
Fig. 34. Lagomys rufescens, Gray. Palatal view of skull. Nat. size. Br, Mus. Z. D.
Fig. 35. Camolagus (Sylvilagus) brasiliensis (Linn.), juv. Palatal view of sknll. Nat. size. Royal College of Science, London.
Fig. 36. Prolagus sardus (Wagn.). Palatal vicw of skull. Nat. sizc. Pleistocene breccia, Montc San Giovanni (Sardinia). Br. Mus. G. D.
Fig. 37. Caprolagus (Oryctolayus) crassicaudatus (Is. Geoffr.). Palatal view of skull. Nat. size. Br. Mus. Z. D. No. 96.6.6.1.
Fig. 38. Caprolayus (Nesolagus) Netscheri (Schleg. \& Jent.). Palatal view of skull. Nat. size. Br Mus. Z. 1.```


[^0]:    * G. R. Waterhouse, 'A Natural History of the Mlammalia,' vol. ii. p. 14 (1848).
    + Zool. et Pal. Franc., see. ed. 1p. 45, 49 (1859)).
    $\ddagger$ Württemb. naturw. Jahresh. xxvi. p. 169 (1070).

[^1]:    * Cat. Foss. Mamm. Br. Mus. i. p. 255 (185.5); Xicholson \& Lydekker, Manual of Palæont. ii. p. 1412 (158!)).
    $\dagger$ Flower \& Lydekker, 'lutroduct. to the Ntudy of Mammalia, p. 491 (1891).
    $\ddagger$ Zittel, Haudb. d. Paleont. i., iv. p. 5.51 (1891-93) ; id. Grundz. d. L’ałont. p. 825 (1895).

[^2]:    * 'Zur Fauna d. Vorwelt.-Foss. Säugethiere ctc. von (Eningen,' p. 10 (1845).
    + Catal. méthor. et descr. des Yert. foss. découv. dans le Bassiu hydrogr. sup. de la Loire, et sustout dans la Vallée de . . . l'Allier (1853).
    $\ddagger$ Op. cit. p. 41.

[^3]:    * Zeitschr. d. deutsch. geol. Gies. siii. p. 659 (1と5 (i).

